Udforskning af Mediastreamer2 VoIP-motoren. Del 7

Artiklens materiale er hentet fra min zen kanal.

Udforskning af Mediastreamer2 VoIP-motoren. Del 7

Brug af TShark til at analysere RTP-pakker

Udforskning af Mediastreamer2 VoIP-motoren. Del 7

I fortiden artiklen Vi samlede et fjernbetjeningskredsløb fra en tonegenerator og en tonedetektor, hvorimod kommunikationen blev udført ved hjælp af en RTP-strøm.

I denne artikel fortsætter vi med at studere lydsignaltransmission ved hjælp af RTP-protokollen. Lad os først opdele vores testapplikation i en sender og en modtager og lære, hvordan man undersøger RTP-strømmen ved hjælp af en netværkstrafikanalysator.

Så for at vi tydeligere kan se, hvilke programelementer der er ansvarlige for RTP-transmission og hvilke der er ansvarlige for at modtage, opdeler vi vores mstest6.c-fil i to uafhængige programmer for sender og modtager; vi vil sætte de fælles funktioner, som begge bruger i den tredje fil, som vi kalder mstest_common.c, vil den blive forbundet af senderen og modtageren ved hjælp af inkluderingsdirektivet:

/* Файл mstest_common.c Общие функции для передатчика и приемника. */
#include <mediastreamer2/msfilter.h>
#include <mediastreamer2/msticker.h>
#include <mediastreamer2/msrtp.h>
#include <ortp/rtpsession.h>
#include <ortp/payloadtype.h>

define PCMU 0

/*---------------------------------------------------------*/
/* Функция регистрации типов полезных нагрузок. */
void register_payloads(void)
{  
 /* Регистрируем типы нагрузок в таблице профилей. Позднее, по индексу    взятому 
     из заголовка RTP-пакета из этой таблицы будут извлекаться    параметры 
     нагрузки, необходимые для декодирования данных пакета. */
  rtp_profile_set_payload (&av_profile, PCMU, &payload_type_pcm8000);
}

/*---------------------------------------------------------*/
/* Эта функция создана из функции create_duplex_rtpsession() в audiostream.c   медиастримера2. */
 static RtpSession *create_rtpsession (int loc_rtp_port, int loc_rtcp_port,  bool_t ipv6, RtpSessionMode mode)
{  
  RtpSession *rtpr;  rtpr = rtp_session_new ((int) mode);  
  rtp_session_set_scheduling_mode (rtpr, 0);  
  rtp_session_set_blocking_mode (rtpr, 0);
  rtp_session_enable_adaptive_jitter_compensation (rtpr, TRUE);
  rtp_session_set_symmetric_rtp (rtpr, TRUE); 
  rtp_session_set_local_addr (rtpr, ipv6 ? "::" : "0.0.0.0", loc_rtp_port,  loc_rtcp_port); 
  rtp_session_signal_connect (rtpr, "timestamp_jump",  (RtpCallback) rtp_session_resync, 0);
  rtp_session_signal_connect (rtpr, "ssrc_changed",  (RtpCallback) rtp_session_resync, 0);
  rtp_session_set_ssrc_changed_threshold (rtpr, 0);
  rtp_session_set_send_payload_type(rtpr, PCMU);

  /* По умолчанию выключаем RTCP-сессию, так как наш пульт не будет использовать 
  её. */  
 rtp_session_enable_rtcp (rtpr, FALSE);
 return rtpr;
}

Nu den separate senderfil:

/* Файл mstest6.c Имитатор пульта управления (передатчика). */
#include <mediastreamer2/dtmfgen.h>
#include <mediastreamer2/msrtp.h>
#include "mstest_common.c"

/*----------------------------------------------------------*/
int main()
{ 
  ms_init();

/* Создаем экземпляры фильтров. */
  MSFilter *voidsource = ms_filter_new(MS_VOID_SOURCE_ID); 
  MSFilter *dtmfgen = ms_filter_new(MS_DTMF_GEN_ID);

/* Создаем фильтр кодера. */
  MSFilter *encoder = ms_filter_create_encoder("PCMU");

/* Регистрируем типы нагрузки. */
  register_payloads();

/* Создаем RTP-сессию передатчика. */
  RtpSession *tx_rtp_session = create_rtpsession (8010, 8011, FALSE, RTP_SESSION_SENDONLY);  
 rtp_session_set_remote_addr_and_port(tx_rtp_session,"127.0.0.1", 7010, 7011); 
 rtp_session_set_send_payload_type(tx_rtp_session, PCMU);  
 MSFilter *rtpsend = ms_filter_new(MS_RTP_SEND_ID); 
 ms_filter_call_method(rtpsend, MS_RTP_SEND_SET_SESSION, tx_rtp_session);

/* Создаем источник тактов - тикер. */ 
 MSTicker *ticker_tx = ms_ticker_new();

/* Соединяем фильтры передатчика. */ 
 ms_filter_link(voidsource, 0, dtmfgen, 0);  
 ms_filter_link(dtmfgen, 0, encoder, 0);
 ms_filter_link(encoder, 0, rtpsend, 0);

/* Подключаем источник тактов. */
  ms_ticker_attach(ticker_tx, voidsource);

/* Настраиваем структуру, управляющую выходным сигналом генератора. */ 
 MSDtmfGenCustomTone dtmf_cfg; 
 dtmf_cfg.tone_name[0] = 0; 
 dtmf_cfg.duration = 1000; 
 dtmf_cfg.frequencies[0] = 440;

/* Будем генерировать один тон, частоту второго тона установим в 0. */  
 dtmf_cfg.frequencies[1] = 0; 
 dtmf_cfg.amplitude = 1.0; 
 dtmf_cfg.interval = 0.;  
 dtmf_cfg.repeat_count = 0.;

/* Организуем цикл сканирования нажатых клавиш. Ввод нуля завершает
* цикл и работу программы. */  
 char key='9'; 
 printf("Нажмите клавишу команды, затем ввод.n"  
"Для завершения программы введите 0.n");  
while(key != '0')  
{
 key = getchar();   
 if ((key >= 49) && (key <= 54)) 
   {
      printf("Отправлена команда: %cn", key);
      /* Устанавливаем частоту генератора в соответствии с
       * кодом нажатой клавиши. */
      dtmf_cfg.frequencies[0] = 440 + 100*(key-49);

      /* Включаем звуковой генератор c обновленной частотой. */
      ms_filter_call_method(dtmfgen, MS_DTMF_GEN_PLAY_CUSTOM,      (void*)&dtmf_cfg); 
   }
   /* Укладываем тред в спячку на 20мс, чтобы другие треды 
   * приложения получили время на работу. */ 
  ms_usleep(20000);
  }
}

Og endelig modtagerfilen:

/* Файл mstest7.c Имитатор приемника. */
include <mediastreamer2/mssndcard.h>
include <mediastreamer2/mstonedetector.h>
include <mediastreamer2/msrtp.h>

/* Подключаем заголовочный файл с функциями управления событиями  медиастримера.*/
include <mediastreamer2/mseventqueue.h>
/* Подключаем файл общих функций. */
include "mstest_common.c"

/* Функция обратного вызова, она будет вызвана фильтром, как только он   обнаружит совпадение характеристик входного сигнала с заданными. */
static void tone_detected_cb(void *data, MSFilter *f, unsigned int event_id,MSToneDetectorEvent *ev)
{ 
 printf("Принята команда: %sn", ev->tone_name);
}

/*----------------------------------------------------------*/
int main()
{ 
 ms_init();

/* Создаем экземпляры фильтров. */  
 MSSndCard *card_playback =  ms_snd_card_manager_get_default_card(ms_snd_card_manager_get()); 
 MSFilter *snd_card_write = ms_snd_card_create_writer(card_playback); 
 MSFilter *detector = ms_filter_new(MS_TONE_DETECTOR_ID);

/* Очищаем массив находящийся внутри детектора тонов, он описывает
* особые приметы разыскиваемых сигналов.*/
  ms_filter_call_method(detector, MS_TONE_DETECTOR_CLEAR_SCANS, 0);

/* Подключаем к фильтру функцию обратного вызова. */  
ms_filter_set_notify_callback(detector,  (MSFilterNotifyFunc)tone_detected_cb, NULL);

/* Создаем массив, каждый элемент которого описывает характеристику
* одного из тонов, который требуется обнаруживать:
Текстовое имя
* данного элемента, частота в герцах, длительность в миллисекундах,
* минимальный уровень относительно 0,775В. */
  MSToneDetectorDef scan[6]= 
 {   
    {"V+",440, 100, 0.1}, /* Команда "Увеличить громкость". */
    {"V-",540, 100, 0.1}, /* Команда "Уменьшить громкость". */
    {"C+",640, 100, 0.1}, /* Команда "Увеличить номер канала". */
    {"C-",740, 100, 0.1}, /* Команда "Уменьшить номер канала". */
    {"ON",840, 100, 0.1}, /* Команда "Включить телевизор". */
    {"OFF", 940, 100, 0.1}/* Команда "Выключить телевизор". */
  };

/* Передаем "приметы" сигналов детектор тонов. */
  int i; 
 for (i = 0; i < 6; i++) 
 { 
   ms_filter_call_method(detector, MS_TONE_DETECTOR_ADD_SCAN,    &scan[i]); 
 }

/* Создаем фильтр декодера */
  MSFilter *decoder=ms_filter_create_decoder("PCMU");

/* Регистрируем типы нагрузки. */
  register_payloads();

/* Создаем RTP-сессию приемника. */
  MSFilter *rtprecv = ms_filter_new(MS_RTP_RECV_ID);
  RtpSession *rx_rtp_session = create_rtpsession (7010, 7011, FALSE, RTP_SESSION_RECVONLY);
  ms_filter_call_method(rtprecv, MS_RTP_RECV_SET_SESSION, rx_rtp_session);

/* Создаем источник тактов - тикер. */ 
 MSTicker *ticker_rx = ms_ticker_new();

/* Соединяем фильтры приёмника. */
  ms_filter_link(rtprecv, 0, decoder, 0);
  ms_filter_link(decoder, 0, detector, 0);
  ms_filter_link(detector, 0, snd_card_write, 0);

/* Подключаем источник тактов. */
  ms_ticker_attach(ticker_rx, rtprecv);
  char key='9';
  printf( "Для завершения программы введите 0.n");
  while(key != '0') 
 {
    key = getchar();
   /* Укладываем тред в спячку на 20мс, чтобы другие треды    * приложения получили время на работу. */
   ms_usleep(20000); 
 }
}

Vi kompilerer senderen og modtageren og starter derefter hver i sin egen konsol. Så skulle det fungere som før - kun vi skal indtaste tal fra 1 til 6 i senderkonsollen, og svaret på dem skal fremgå i modtagerkonsollen. Toner skal kunne høres i højttaleren. Hvis alt er tilfældet, så har vi etableret en forbindelse mellem modtageren og senderen - der er en kontinuerlig transmission af RTP-pakker fra senderen til modtageren.

Nu er det tid til at installere en trafikanalysator; til dette vil vi installere konsolversionen af ​​det fremragende Wireshark-program - det kaldes TShark. Jeg valgte TShark til yderligere diskussion for at lette beskrivelsen af ​​programledelse. Med Wireshark ville jeg have brug for et hav af skærmbilleder, som hurtigt kunne blive forældede, når en ny version af Wireshark udkommer.

Hvis du ved, hvordan du bruger Wireshark, kan du bruge det til at studere vores eksempler. Men selv i dette tilfælde anbefaler jeg, at du mestrer TShark, da det vil hjælpe dig med at automatisere test af dine VoIP-applikationer, samt udføre fjernoptagelse.

Installer TShark med kommandoen:

$ sudo apt-get install tshark

Traditionelt kontrollerer vi installationsresultatet ved at bede om programversionen:

$ tshark --version

Hvis der modtages et fyldestgørende svar, fortsætter vi videre.

Da vores pakker kun går inde i computeren indtil videre, kan vi fortælle tshark kun at vise sådanne pakker. For at gøre dette skal du vælge pakkefangst fra grænsefladen loopback (loopback) ved at sende TShark muligheden -ilo:

$ sudo tshark -i lo

Beskeder om pakker sendt af vores sender vil straks begynde at strømme ind i konsollen (kontinuerligt, uanset om vi har trykket på knappen på fjernbetjeningen eller ej). Måske er der programmer på din computer, som også sender pakker gennem et abonnentkredsløb, og i så fald modtager vi en blanding af vores og andres pakker. For at være sikker på, at vi på listen kun ser pakker sendt af vores fjernbetjening, tilføjer vi et filter efter portnummer. Ved at trykke på Ctrl-C stopper vi analysatoren og indtaster et filter for portnummeret, som fjernbetjeningen bruger som destinationsport for sin transmission (8010): -f "udp port 8010". Nu vil vores kommandolinje se sådan ud:

$ sudo tshark -i lo -f "udp port 8010"

Følgende output vises i konsollen (første 10 linjer):

 1 0.000000000    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172 
 2 0.020059705    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 3 0.040044409    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172 
 4 0.060057104    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 5 0.080082311    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172  
 6 0.100597153    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172 
 7 0.120122668    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 8 0.140204789    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 9 0.160719008    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
10 0.180673685    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172

Indtil videre er disse ikke pakker, men en nummereret liste over hændelser, hvor hver linje er en besked om den næste pakke, der blev bemærket på interfacet. Da vi allerede har sørget for pakkefiltrering, ser vi i oversigten kun beskeder om pakker fra vores sender. Lad os derefter dechifrere denne tabel efter kolonnenumre:

Begivenhedsnummer.
Tidspunktet for dets indtræden.
Pakkens kilde-IP-adresse og pakkens destinations-IP-adresse.
Pakkens protokol vises som UDP, fordi RTP-pakker sendes som nyttelast inde i UDP-pakker.
Pakkestørrelse i bytes.
Pakkens kildeportnummer og pakkens destinationsportnummer.
Størrelsen af ​​pakkens nyttelast, herfra kan vi konkludere, at vores sender genererer RTP-pakker på 172 bytes i størrelse, der ligesom en and i en kiste er placeret inde i en UDP-pakke på 214 bytes i størrelse.
Nu er det tid til at kigge ind i UDP-pakkerne, for dette vil vi starte TShark med et udvidet sæt nøgler:

sudo tshark -i lo -f "udp port 8010"  -P -V -O rtp -o rtp.heuristic_rtp:TRUE -x

Som et resultat bliver programoutputtet beriget - en dekryptering af det interne indhold af pakken, der forårsagede det, vil blive tilføjet til hver begivenhed. For at få et bedre overblik over outputtet kan du enten stoppe TShark ved at trykke på Ctrl-C eller duplikere dets output til en fil ved at tilføje en pipeline til tee-programmet til run-kommandoen, og specificere filnavnet, tee <filename>:

$ sudo tshark -i lo -f "udp port 8010"  -P -V -O rtp -o rtp.heuristic_rtp:TRUE -x | tee  log.txt

Lad os nu se på, hvad vi har i filen, her er den første pakke fra den:

1 0.000000000    127.0.0.1 → 127.0.0.1    RTP 214 PT=ITU-T G.711 PCMU, SSRC=0x6B8B4567, Seq=58366, Time=355368720
Frame 1: 214 bytes on wire (1712 bits), 214 bytes captured (1712 bits) on interface 0
Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1User Datagram Protocol, Src Port: 8010, Dst Port: 7010
Real-Time Transport Protocol    [Stream setup by HEUR RT (frame 1)]
        [Setup frame: 1] 
       [Setup Method: HEUR RT]
    10.. .... = Version: RFC 1889 Version (2)
    ..0. .... = Padding: False
    ...0 .... = Extension: False
    .... 0000 = Contributing source identifiers count: 0   
   0... .... = Marker: False
    Payload type: ITU-T G.711 PCMU (0)
    Sequence number: 58366    [Extended sequence number: 58366]
    Timestamp: 355368720
    Synchronization Source identifier: 0x6b8b4567 (1804289383)
    Payload: ffffffffffffffffffffffffffffffffffffffffffffffff...

0000  00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00   ..............E.
0010  00 c8 3c 69 40 00 40 11 ff b9 7f 00 00 01 7f 00   ..<i@.@.........
0020  00 01 1f 4a 1b 62 00 b4 fe c7 80 00 e3 fe 15 2e   ...J.b..........
0030  7f 10 6b 8b 45 67 ff ff ff ff ff ff ff ff ff ff   ..k.Eg..........
0040  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0050  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0060  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0070  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0080  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0090  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00a0  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00b0  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00c0  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00d0  ff ff ff ff ff ff                                  ......

Vi vil afsætte den næste artikel til at analysere oplysningerne i denne liste og vil uundgåeligt tale om den interne struktur af RTP-pakken.

Kilde: www.habr.com

Tilføj en kommentar