Explorando el motor VoIP de Mediastreamer2. Parte 7

El material del artículo está tomado de mi canal zen.

Explorando el motor VoIP de Mediastreamer2. Parte 7

Usando TShark para analizar paquetes RTP

Explorando el motor VoIP de Mediastreamer2. Parte 7

En el pasado статье Montamos un circuito de control remoto a partir de un generador de tonos y un detector de tonos, cuya comunicación se realizó mediante un flujo RTP.

En este artículo, continuamos estudiando la transmisión de señales de audio utilizando el protocolo RTP. Primero, dividamos nuestra aplicación de prueba en un transmisor y un receptor y aprendamos cómo examinar el flujo RTP usando un analizador de tráfico de red.

Entonces, para que podamos ver más claramente qué elementos del programa se encargan de la transmisión RTP y cuáles de la recepción, dividimos nuestro archivo mstest6.c en dos programas independientes para el transmisor y el receptor; pondremos las funciones comunes que ambos usan en el tercer archivo, al que llamaremos mstest_common.c, será conectado por el transmisor y el receptor usando la directiva include:

/* Файл mstest_common.c Общие функции для передатчика и приемника. */
#include <mediastreamer2/msfilter.h>
#include <mediastreamer2/msticker.h>
#include <mediastreamer2/msrtp.h>
#include <ortp/rtpsession.h>
#include <ortp/payloadtype.h>

define PCMU 0

/*---------------------------------------------------------*/
/* Функция регистрации типов полезных нагрузок. */
void register_payloads(void)
{  
 /* Регистрируем типы нагрузок в таблице профилей. Позднее, по индексу    взятому 
     из заголовка RTP-пакета из этой таблицы будут извлекаться    параметры 
     нагрузки, необходимые для декодирования данных пакета. */
  rtp_profile_set_payload (&av_profile, PCMU, &payload_type_pcm8000);
}

/*---------------------------------------------------------*/
/* Эта функция создана из функции create_duplex_rtpsession() в audiostream.c   медиастримера2. */
 static RtpSession *create_rtpsession (int loc_rtp_port, int loc_rtcp_port,  bool_t ipv6, RtpSessionMode mode)
{  
  RtpSession *rtpr;  rtpr = rtp_session_new ((int) mode);  
  rtp_session_set_scheduling_mode (rtpr, 0);  
  rtp_session_set_blocking_mode (rtpr, 0);
  rtp_session_enable_adaptive_jitter_compensation (rtpr, TRUE);
  rtp_session_set_symmetric_rtp (rtpr, TRUE); 
  rtp_session_set_local_addr (rtpr, ipv6 ? "::" : "0.0.0.0", loc_rtp_port,  loc_rtcp_port); 
  rtp_session_signal_connect (rtpr, "timestamp_jump",  (RtpCallback) rtp_session_resync, 0);
  rtp_session_signal_connect (rtpr, "ssrc_changed",  (RtpCallback) rtp_session_resync, 0);
  rtp_session_set_ssrc_changed_threshold (rtpr, 0);
  rtp_session_set_send_payload_type(rtpr, PCMU);

  /* По умолчанию выключаем RTCP-сессию, так как наш пульт не будет использовать 
  её. */  
 rtp_session_enable_rtcp (rtpr, FALSE);
 return rtpr;
}

Ahora el archivo transmisor separado:

/* Файл mstest6.c Имитатор пульта управления (передатчика). */
#include <mediastreamer2/dtmfgen.h>
#include <mediastreamer2/msrtp.h>
#include "mstest_common.c"

/*----------------------------------------------------------*/
int main()
{ 
  ms_init();

/* Создаем экземпляры фильтров. */
  MSFilter *voidsource = ms_filter_new(MS_VOID_SOURCE_ID); 
  MSFilter *dtmfgen = ms_filter_new(MS_DTMF_GEN_ID);

/* Создаем фильтр кодера. */
  MSFilter *encoder = ms_filter_create_encoder("PCMU");

/* Регистрируем типы нагрузки. */
  register_payloads();

/* Создаем RTP-сессию передатчика. */
  RtpSession *tx_rtp_session = create_rtpsession (8010, 8011, FALSE, RTP_SESSION_SENDONLY);  
 rtp_session_set_remote_addr_and_port(tx_rtp_session,"127.0.0.1", 7010, 7011); 
 rtp_session_set_send_payload_type(tx_rtp_session, PCMU);  
 MSFilter *rtpsend = ms_filter_new(MS_RTP_SEND_ID); 
 ms_filter_call_method(rtpsend, MS_RTP_SEND_SET_SESSION, tx_rtp_session);

/* Создаем источник тактов - тикер. */ 
 MSTicker *ticker_tx = ms_ticker_new();

/* Соединяем фильтры передатчика. */ 
 ms_filter_link(voidsource, 0, dtmfgen, 0);  
 ms_filter_link(dtmfgen, 0, encoder, 0);
 ms_filter_link(encoder, 0, rtpsend, 0);

/* Подключаем источник тактов. */
  ms_ticker_attach(ticker_tx, voidsource);

/* Настраиваем структуру, управляющую выходным сигналом генератора. */ 
 MSDtmfGenCustomTone dtmf_cfg; 
 dtmf_cfg.tone_name[0] = 0; 
 dtmf_cfg.duration = 1000; 
 dtmf_cfg.frequencies[0] = 440;

/* Будем генерировать один тон, частоту второго тона установим в 0. */  
 dtmf_cfg.frequencies[1] = 0; 
 dtmf_cfg.amplitude = 1.0; 
 dtmf_cfg.interval = 0.;  
 dtmf_cfg.repeat_count = 0.;

/* Организуем цикл сканирования нажатых клавиш. Ввод нуля завершает
* цикл и работу программы. */  
 char key='9'; 
 printf("Нажмите клавишу команды, затем ввод.n"  
"Для завершения программы введите 0.n");  
while(key != '0')  
{
 key = getchar();   
 if ((key >= 49) && (key <= 54)) 
   {
      printf("Отправлена команда: %cn", key);
      /* Устанавливаем частоту генератора в соответствии с
       * кодом нажатой клавиши. */
      dtmf_cfg.frequencies[0] = 440 + 100*(key-49);

      /* Включаем звуковой генератор c обновленной частотой. */
      ms_filter_call_method(dtmfgen, MS_DTMF_GEN_PLAY_CUSTOM,      (void*)&dtmf_cfg); 
   }
   /* Укладываем тред в спячку на 20мс, чтобы другие треды 
   * приложения получили время на работу. */ 
  ms_usleep(20000);
  }
}

Y por último, el archivo receptor:

/* Файл mstest7.c Имитатор приемника. */
include <mediastreamer2/mssndcard.h>
include <mediastreamer2/mstonedetector.h>
include <mediastreamer2/msrtp.h>

/* Подключаем заголовочный файл с функциями управления событиями  медиастримера.*/
include <mediastreamer2/mseventqueue.h>
/* Подключаем файл общих функций. */
include "mstest_common.c"

/* Функция обратного вызова, она будет вызвана фильтром, как только он   обнаружит совпадение характеристик входного сигнала с заданными. */
static void tone_detected_cb(void *data, MSFilter *f, unsigned int event_id,MSToneDetectorEvent *ev)
{ 
 printf("Принята команда: %sn", ev->tone_name);
}

/*----------------------------------------------------------*/
int main()
{ 
 ms_init();

/* Создаем экземпляры фильтров. */  
 MSSndCard *card_playback =  ms_snd_card_manager_get_default_card(ms_snd_card_manager_get()); 
 MSFilter *snd_card_write = ms_snd_card_create_writer(card_playback); 
 MSFilter *detector = ms_filter_new(MS_TONE_DETECTOR_ID);

/* Очищаем массив находящийся внутри детектора тонов, он описывает
* особые приметы разыскиваемых сигналов.*/
  ms_filter_call_method(detector, MS_TONE_DETECTOR_CLEAR_SCANS, 0);

/* Подключаем к фильтру функцию обратного вызова. */  
ms_filter_set_notify_callback(detector,  (MSFilterNotifyFunc)tone_detected_cb, NULL);

/* Создаем массив, каждый элемент которого описывает характеристику
* одного из тонов, который требуется обнаруживать:
Текстовое имя
* данного элемента, частота в герцах, длительность в миллисекундах,
* минимальный уровень относительно 0,775В. */
  MSToneDetectorDef scan[6]= 
 {   
    {"V+",440, 100, 0.1}, /* Команда "Увеличить громкость". */
    {"V-",540, 100, 0.1}, /* Команда "Уменьшить громкость". */
    {"C+",640, 100, 0.1}, /* Команда "Увеличить номер канала". */
    {"C-",740, 100, 0.1}, /* Команда "Уменьшить номер канала". */
    {"ON",840, 100, 0.1}, /* Команда "Включить телевизор". */
    {"OFF", 940, 100, 0.1}/* Команда "Выключить телевизор". */
  };

/* Передаем "приметы" сигналов детектор тонов. */
  int i; 
 for (i = 0; i < 6; i++) 
 { 
   ms_filter_call_method(detector, MS_TONE_DETECTOR_ADD_SCAN,    &scan[i]); 
 }

/* Создаем фильтр декодера */
  MSFilter *decoder=ms_filter_create_decoder("PCMU");

/* Регистрируем типы нагрузки. */
  register_payloads();

/* Создаем RTP-сессию приемника. */
  MSFilter *rtprecv = ms_filter_new(MS_RTP_RECV_ID);
  RtpSession *rx_rtp_session = create_rtpsession (7010, 7011, FALSE, RTP_SESSION_RECVONLY);
  ms_filter_call_method(rtprecv, MS_RTP_RECV_SET_SESSION, rx_rtp_session);

/* Создаем источник тактов - тикер. */ 
 MSTicker *ticker_rx = ms_ticker_new();

/* Соединяем фильтры приёмника. */
  ms_filter_link(rtprecv, 0, decoder, 0);
  ms_filter_link(decoder, 0, detector, 0);
  ms_filter_link(detector, 0, snd_card_write, 0);

/* Подключаем источник тактов. */
  ms_ticker_attach(ticker_rx, rtprecv);
  char key='9';
  printf( "Для завершения программы введите 0.n");
  while(key != '0') 
 {
    key = getchar();
   /* Укладываем тред в спячку на 20мс, чтобы другие треды    * приложения получили время на работу. */
   ms_usleep(20000); 
 }
}

Compilamos el transmisor y el receptor y luego lanzamos cada uno en su propia consola. Entonces debería funcionar como antes: solo debemos ingresar los números del 1 al 6 en la consola del transmisor, y la respuesta a ellos debería aparecer en la consola del receptor. Los tonos deben ser audibles en el altavoz. Si todo es así, entonces hemos establecido una conexión entre el receptor y el transmisor: hay una transmisión continua de paquetes RTP desde el transmisor al receptor.

Ahora es el momento de instalar un analizador de tráfico, para ello instalaremos la versión de consola del excelente programa Wireshark, se llama TShark. Elegí TShark para una discusión más profunda para facilitar la descripción de la gestión del programa. Con Wireshark, necesitaría un mar de capturas de pantalla, que podrían quedar obsoletas rápidamente cuando se lance una nueva versión de Wireshark.

Si sabe cómo utilizar Wireshark, puede utilizarlo para estudiar nuestros ejemplos. Pero incluso en este caso, te recomiendo que domines TShark, ya que te ayudará a automatizar las pruebas de tus aplicaciones VoIP, así como a realizar capturas remotas.

Instale TShark con el comando:

$ sudo apt-get install tshark

Tradicionalmente comprobamos el resultado de la instalación preguntando por la versión del programa:

$ tshark --version

Si se recibe una respuesta adecuada, continuamos más.

Dado que nuestros paquetes solo van dentro de la computadora por ahora, podemos decirle a tshark que muestre solo dichos paquetes. Para hacer esto, debe seleccionar la captura de paquetes desde la interfaz loopback (bucle invertido) pasando la opción a TShark -ilo:

$ sudo tshark -i lo

Los mensajes sobre los paquetes enviados por nuestro transmisor comenzarán a llegar inmediatamente a la consola (de forma continua, independientemente de si presionamos el botón del control remoto o no). Quizás haya programas en tu ordenador que también envíen paquetes a través de un bucle local, en cuyo caso recibiremos una mezcla de paquetes nuestros y de otras personas. Para asegurarnos de que en la lista veamos sólo los paquetes enviados por nuestro mando a distancia, añadiremos un filtro por número de puerto. Pulsando Ctrl-C paramos el analizador e introducimos un filtro para el número de puerto que utiliza el mando a distancia como puerto destino para su transmisión (8010): -f "puerto udp 8010". Ahora nuestra línea de comando se verá así:

$ sudo tshark -i lo -f "udp port 8010"

El siguiente resultado aparecerá en la consola (primeras 10 líneas):

 1 0.000000000    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172 
 2 0.020059705    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 3 0.040044409    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172 
 4 0.060057104    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 5 0.080082311    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172  
 6 0.100597153    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172 
 7 0.120122668    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 8 0.140204789    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 9 0.160719008    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
10 0.180673685    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172

Por ahora, estos no son paquetes, sino una lista numerada de eventos, donde cada línea es un mensaje sobre el siguiente paquete que se detectó en la interfaz. Como ya nos hemos ocupado del filtrado de paquetes, en el listado solo vemos mensajes sobre paquetes de nuestro transmisor. A continuación, descifremos esta tabla por números de columna:

Numero de evento.
El momento de su ocurrencia.
La dirección IP de origen del paquete y la dirección IP de destino del paquete.
El protocolo del paquete se muestra como UDP porque los paquetes RTP se envían como carga útil dentro de los paquetes UDP.
Tamaño del paquete en bytes.
El número de puerto de origen del paquete y el número de puerto de destino del paquete.
El tamaño de la carga útil del paquete, de aquí podemos concluir que nuestro transmisor genera paquetes RTP de 172 bytes de tamaño, que, como un pato en el cofre, se encuentran dentro de un paquete UDP de 214 bytes de tamaño.
Ahora es el momento de mirar dentro de los paquetes UDP, para ello ejecutaremos TShark con un conjunto ampliado de claves:

sudo tshark -i lo -f "udp port 8010"  -P -V -O rtp -o rtp.heuristic_rtp:TRUE -x

Como resultado, la salida del programa se enriquecerá: a cada evento se agregará un descifrado del contenido interno del paquete que lo causó. Para ver mejor el resultado, puede detener TShark presionando Ctrl-C o duplicar su resultado en un archivo agregando una canalización al programa tee al comando de ejecución, especificando el nombre del archivo, tee <nombre de archivo>:

$ sudo tshark -i lo -f "udp port 8010"  -P -V -O rtp -o rtp.heuristic_rtp:TRUE -x | tee  log.txt

Ahora veamos lo que tenemos en el archivo, aquí está el primer paquete:

1 0.000000000    127.0.0.1 → 127.0.0.1    RTP 214 PT=ITU-T G.711 PCMU, SSRC=0x6B8B4567, Seq=58366, Time=355368720
Frame 1: 214 bytes on wire (1712 bits), 214 bytes captured (1712 bits) on interface 0
Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1User Datagram Protocol, Src Port: 8010, Dst Port: 7010
Real-Time Transport Protocol    [Stream setup by HEUR RT (frame 1)]
        [Setup frame: 1] 
       [Setup Method: HEUR RT]
    10.. .... = Version: RFC 1889 Version (2)
    ..0. .... = Padding: False
    ...0 .... = Extension: False
    .... 0000 = Contributing source identifiers count: 0   
   0... .... = Marker: False
    Payload type: ITU-T G.711 PCMU (0)
    Sequence number: 58366    [Extended sequence number: 58366]
    Timestamp: 355368720
    Synchronization Source identifier: 0x6b8b4567 (1804289383)
    Payload: ffffffffffffffffffffffffffffffffffffffffffffffff...

0000  00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00   ..............E.
0010  00 c8 3c 69 40 00 40 11 ff b9 7f 00 00 01 7f 00   ..<i@.@.........
0020  00 01 1f 4a 1b 62 00 b4 fe c7 80 00 e3 fe 15 2e   ...J.b..........
0030  7f 10 6b 8b 45 67 ff ff ff ff ff ff ff ff ff ff   ..k.Eg..........
0040  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0050  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0060  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0070  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0080  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0090  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00a0  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00b0  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00c0  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00d0  ff ff ff ff ff ff                                  ......

Dedicaremos el próximo artículo a analizar la información contenida en este listado e inevitablemente hablaremos de la estructura interna del paquete RTP.

Fuente: habr.com

Añadir un comentario