Mediastreamer2 VoIP-mootori uurimine. 7. osa

Artikli materjal on võetud minu zen kanal.

Mediastreamer2 VoIP-mootori uurimine. 7. osa

TSharki kasutamine RTP-pakettide analüüsimiseks

Mediastreamer2 VoIP-mootori uurimine. 7. osa

Viimases siit Panime kokku toonigeneraatorist ja toonidetektorist kaugjuhtimisahela, mille vaheline suhtlus toimus RTP voo abil.

Selles artiklis jätkame helisignaali edastamise uurimist RTP-protokolli abil. Esmalt jagame oma testrakenduse saatjaks ja vastuvõtjaks ning õpime uurima RTP-voogu võrguliikluse analüsaatori abil.

Et saaksime selgemalt näha, millised programmielemendid vastutavad RTP edastuse ja millised vastuvõtmise eest, jagame oma mstest6.c faili kaheks sõltumatuks programmiks saatja ja vastuvõtja jaoks; paneme ühised funktsioonid, mida mõlemad kasutavad. kolmandas failis , mida me kutsume mstest_common.c, ühendavad selle saatja ja vastuvõtja, kasutades käsk kaasata:

/* Файл mstest_common.c Общие функции для передатчика и приемника. */
#include <mediastreamer2/msfilter.h>
#include <mediastreamer2/msticker.h>
#include <mediastreamer2/msrtp.h>
#include <ortp/rtpsession.h>
#include <ortp/payloadtype.h>

define PCMU 0

/*---------------------------------------------------------*/
/* Функция регистрации типов полезных нагрузок. */
void register_payloads(void)
{  
 /* Регистрируем типы нагрузок в таблице профилей. Позднее, по индексу    взятому 
     из заголовка RTP-пакета из этой таблицы будут извлекаться    параметры 
     нагрузки, необходимые для декодирования данных пакета. */
  rtp_profile_set_payload (&av_profile, PCMU, &payload_type_pcm8000);
}

/*---------------------------------------------------------*/
/* Эта функция создана из функции create_duplex_rtpsession() в audiostream.c   медиастримера2. */
 static RtpSession *create_rtpsession (int loc_rtp_port, int loc_rtcp_port,  bool_t ipv6, RtpSessionMode mode)
{  
  RtpSession *rtpr;  rtpr = rtp_session_new ((int) mode);  
  rtp_session_set_scheduling_mode (rtpr, 0);  
  rtp_session_set_blocking_mode (rtpr, 0);
  rtp_session_enable_adaptive_jitter_compensation (rtpr, TRUE);
  rtp_session_set_symmetric_rtp (rtpr, TRUE); 
  rtp_session_set_local_addr (rtpr, ipv6 ? "::" : "0.0.0.0", loc_rtp_port,  loc_rtcp_port); 
  rtp_session_signal_connect (rtpr, "timestamp_jump",  (RtpCallback) rtp_session_resync, 0);
  rtp_session_signal_connect (rtpr, "ssrc_changed",  (RtpCallback) rtp_session_resync, 0);
  rtp_session_set_ssrc_changed_threshold (rtpr, 0);
  rtp_session_set_send_payload_type(rtpr, PCMU);

  /* По умолчанию выключаем RTCP-сессию, так как наш пульт не будет использовать 
  её. */  
 rtp_session_enable_rtcp (rtpr, FALSE);
 return rtpr;
}

Nüüd eraldi saatja fail:

/* Файл mstest6.c Имитатор пульта управления (передатчика). */
#include <mediastreamer2/dtmfgen.h>
#include <mediastreamer2/msrtp.h>
#include "mstest_common.c"

/*----------------------------------------------------------*/
int main()
{ 
  ms_init();

/* Создаем экземпляры фильтров. */
  MSFilter *voidsource = ms_filter_new(MS_VOID_SOURCE_ID); 
  MSFilter *dtmfgen = ms_filter_new(MS_DTMF_GEN_ID);

/* Создаем фильтр кодера. */
  MSFilter *encoder = ms_filter_create_encoder("PCMU");

/* Регистрируем типы нагрузки. */
  register_payloads();

/* Создаем RTP-сессию передатчика. */
  RtpSession *tx_rtp_session = create_rtpsession (8010, 8011, FALSE, RTP_SESSION_SENDONLY);  
 rtp_session_set_remote_addr_and_port(tx_rtp_session,"127.0.0.1", 7010, 7011); 
 rtp_session_set_send_payload_type(tx_rtp_session, PCMU);  
 MSFilter *rtpsend = ms_filter_new(MS_RTP_SEND_ID); 
 ms_filter_call_method(rtpsend, MS_RTP_SEND_SET_SESSION, tx_rtp_session);

/* Создаем источник тактов - тикер. */ 
 MSTicker *ticker_tx = ms_ticker_new();

/* Соединяем фильтры передатчика. */ 
 ms_filter_link(voidsource, 0, dtmfgen, 0);  
 ms_filter_link(dtmfgen, 0, encoder, 0);
 ms_filter_link(encoder, 0, rtpsend, 0);

/* Подключаем источник тактов. */
  ms_ticker_attach(ticker_tx, voidsource);

/* Настраиваем структуру, управляющую выходным сигналом генератора. */ 
 MSDtmfGenCustomTone dtmf_cfg; 
 dtmf_cfg.tone_name[0] = 0; 
 dtmf_cfg.duration = 1000; 
 dtmf_cfg.frequencies[0] = 440;

/* Будем генерировать один тон, частоту второго тона установим в 0. */  
 dtmf_cfg.frequencies[1] = 0; 
 dtmf_cfg.amplitude = 1.0; 
 dtmf_cfg.interval = 0.;  
 dtmf_cfg.repeat_count = 0.;

/* Организуем цикл сканирования нажатых клавиш. Ввод нуля завершает
* цикл и работу программы. */  
 char key='9'; 
 printf("Нажмите клавишу команды, затем ввод.n"  
"Для завершения программы введите 0.n");  
while(key != '0')  
{
 key = getchar();   
 if ((key >= 49) && (key <= 54)) 
   {
      printf("Отправлена команда: %cn", key);
      /* Устанавливаем частоту генератора в соответствии с
       * кодом нажатой клавиши. */
      dtmf_cfg.frequencies[0] = 440 + 100*(key-49);

      /* Включаем звуковой генератор c обновленной частотой. */
      ms_filter_call_method(dtmfgen, MS_DTMF_GEN_PLAY_CUSTOM,      (void*)&dtmf_cfg); 
   }
   /* Укладываем тред в спячку на 20мс, чтобы другие треды 
   * приложения получили время на работу. */ 
  ms_usleep(20000);
  }
}

Ja lõpuks vastuvõtja fail:

/* Файл mstest7.c Имитатор приемника. */
include <mediastreamer2/mssndcard.h>
include <mediastreamer2/mstonedetector.h>
include <mediastreamer2/msrtp.h>

/* Подключаем заголовочный файл с функциями управления событиями  медиастримера.*/
include <mediastreamer2/mseventqueue.h>
/* Подключаем файл общих функций. */
include "mstest_common.c"

/* Функция обратного вызова, она будет вызвана фильтром, как только он   обнаружит совпадение характеристик входного сигнала с заданными. */
static void tone_detected_cb(void *data, MSFilter *f, unsigned int event_id,MSToneDetectorEvent *ev)
{ 
 printf("Принята команда: %sn", ev->tone_name);
}

/*----------------------------------------------------------*/
int main()
{ 
 ms_init();

/* Создаем экземпляры фильтров. */  
 MSSndCard *card_playback =  ms_snd_card_manager_get_default_card(ms_snd_card_manager_get()); 
 MSFilter *snd_card_write = ms_snd_card_create_writer(card_playback); 
 MSFilter *detector = ms_filter_new(MS_TONE_DETECTOR_ID);

/* Очищаем массив находящийся внутри детектора тонов, он описывает
* особые приметы разыскиваемых сигналов.*/
  ms_filter_call_method(detector, MS_TONE_DETECTOR_CLEAR_SCANS, 0);

/* Подключаем к фильтру функцию обратного вызова. */  
ms_filter_set_notify_callback(detector,  (MSFilterNotifyFunc)tone_detected_cb, NULL);

/* Создаем массив, каждый элемент которого описывает характеристику
* одного из тонов, который требуется обнаруживать:
Текстовое имя
* данного элемента, частота в герцах, длительность в миллисекундах,
* минимальный уровень относительно 0,775В. */
  MSToneDetectorDef scan[6]= 
 {   
    {"V+",440, 100, 0.1}, /* Команда "Увеличить громкость". */
    {"V-",540, 100, 0.1}, /* Команда "Уменьшить громкость". */
    {"C+",640, 100, 0.1}, /* Команда "Увеличить номер канала". */
    {"C-",740, 100, 0.1}, /* Команда "Уменьшить номер канала". */
    {"ON",840, 100, 0.1}, /* Команда "Включить телевизор". */
    {"OFF", 940, 100, 0.1}/* Команда "Выключить телевизор". */
  };

/* Передаем "приметы" сигналов детектор тонов. */
  int i; 
 for (i = 0; i < 6; i++) 
 { 
   ms_filter_call_method(detector, MS_TONE_DETECTOR_ADD_SCAN,    &scan[i]); 
 }

/* Создаем фильтр декодера */
  MSFilter *decoder=ms_filter_create_decoder("PCMU");

/* Регистрируем типы нагрузки. */
  register_payloads();

/* Создаем RTP-сессию приемника. */
  MSFilter *rtprecv = ms_filter_new(MS_RTP_RECV_ID);
  RtpSession *rx_rtp_session = create_rtpsession (7010, 7011, FALSE, RTP_SESSION_RECVONLY);
  ms_filter_call_method(rtprecv, MS_RTP_RECV_SET_SESSION, rx_rtp_session);

/* Создаем источник тактов - тикер. */ 
 MSTicker *ticker_rx = ms_ticker_new();

/* Соединяем фильтры приёмника. */
  ms_filter_link(rtprecv, 0, decoder, 0);
  ms_filter_link(decoder, 0, detector, 0);
  ms_filter_link(detector, 0, snd_card_write, 0);

/* Подключаем источник тактов. */
  ms_ticker_attach(ticker_rx, rtprecv);
  char key='9';
  printf( "Для завершения программы введите 0.n");
  while(key != '0') 
 {
    key = getchar();
   /* Укладываем тред в спячку на 20мс, чтобы другие треды    * приложения получили время на работу. */
   ms_usleep(20000); 
 }
}

Kompileerime saatja ja vastuvõtja ning seejärel käivitame mõlemad oma konsoolis. Siis peaks see toimima nagu varem - ainult me ​​peaksime saatja konsoolis sisestama numbrid 1 kuni 6 ja vastus neile peaks ilmuma vastuvõtja konsoolis. Toonid peaksid kõlarist olema kuuldavad. Kui kõik on nii, siis oleme loonud ühenduse vastuvõtja ja saatja vahel – toimub pidev RTP-pakettide edastamine saatjalt vastuvõtjale.

Nüüd on aeg paigaldada liiklusanalüsaator, selleks installime suurepärase Wiresharki programmi konsooliversiooni - seda nimetatakse TSharkiks. Valisin edasiseks aruteluks TSharki, et hõlbustada programmihalduse kirjeldamist. Wiresharki puhul oleks mul vaja ekraanipiltide merd, mis võivad Wiresharki uue versiooni avaldamisel kiiresti aeguda.

Kui teate, kuidas Wiresharki kasutada, saate seda kasutada meie näidete uurimiseks. Kuid isegi sel juhul soovitan teil TSharki meisterdada, kuna see aitab teil automatiseerida VoIP-rakenduste testimist ja kaughõivet.

Installige TShark käsuga:

$ sudo apt-get install tshark

Traditsiooniliselt kontrollime installitulemust, küsides programmi versiooni:

$ tshark --version

Adekvaatse vastuse saamisel jätkame edasi.

Kuna meie paketid lähevad praegu ainult arvutisse, võime öelda, et tshark näitaks ainult selliseid pakette. Selleks peate liidesest valima pakettide hõivamise tagasihelistamine (loopback), jättes valiku TSharkile -ilo:

$ sudo tshark -i lo

Teateid meie saatja saadetud pakettide kohta hakkavad koheselt konsooli valguma (pidevalt, olenemata sellest, kas vajutasime kaugjuhtimispuldi nuppu või mitte). Võib-olla on teie arvutis programme, mis saadavad pakette ka kohaliku ahela kaudu, mille puhul saame nii enda kui ka teiste pakette. Et olla kindel, et loendis näeme ainult meie kaugjuhtimispuldi saadetud pakette, lisame filtri pordi numbri järgi. Vajutades Ctrl-C, peatame analüsaatori ja sisestame filtri pordi numbri jaoks, mida kaugjuhtimispult kasutab edastamise sihtpordina (8010): -f "udp port 8010". Nüüd näeb meie käsurida välja selline:

$ sudo tshark -i lo -f "udp port 8010"

Konsoolis kuvatakse järgmine väljund (esimesed 10 rida):

 1 0.000000000    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172 
 2 0.020059705    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 3 0.040044409    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172 
 4 0.060057104    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 5 0.080082311    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172  
 6 0.100597153    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172 
 7 0.120122668    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 8 0.140204789    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
 9 0.160719008    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172
10 0.180673685    127.0.0.1 → 127.0.0.1    UDP 214 8010 → 7010 Len=172

Praegu pole need paketid, vaid sündmuste nummerdatud loend, kus iga rida on teade järgmise paketi kohta, mida liidesel märgati. Kuna oleme pakettide filtreerimise eest juba hoolitsenud, näeme loendis ainult meie saatja pakettide sõnumeid. Järgmisena dešifreerime selle tabeli veergude numbrite järgi:

Sündmuse number.
Selle esinemise aeg.
Paketi lähte-IP-aadress ja paketi sihtkoha IP-aadress.
Paketi protokolli näidatakse UDP-na, kuna RTP-paketid saadetakse UDP-pakettide sees kasuliku koormusena.
Paketi suurus baitides.
Paketi allika pordi number ja paketi sihtpordi number.
Paketi kasuliku koormuse suurus, siit võib järeldada, et meie saatja genereerib 172 baidiseid RTP pakette, mis nagu part rinnas paiknevad 214 baidise UDP paketi sees.
Nüüd on aeg vaadata UDP-pakettide sisse, selleks käivitame TSharki laiendatud võtmete komplektiga:

sudo tshark -i lo -f "udp port 8010"  -P -V -O rtp -o rtp.heuristic_rtp:TRUE -x

Selle tulemusena rikastatakse programmi väljundit - igale sündmusele lisatakse selle põhjustanud paketi sisemise sisu dekrüpteerimine. Väljundi paremaks nägemiseks saate TSharki peatada, vajutades klahvikombinatsiooni Ctrl-C või kopeerida selle väljundi faili, lisades tee programmile konveieri käsule Run, määrates faili nime tee <failinimi>:

$ sudo tshark -i lo -f "udp port 8010"  -P -V -O rtp -o rtp.heuristic_rtp:TRUE -x | tee  log.txt

Vaatame nüüd, mis failis on, siin on esimene pakett sellest:

1 0.000000000    127.0.0.1 → 127.0.0.1    RTP 214 PT=ITU-T G.711 PCMU, SSRC=0x6B8B4567, Seq=58366, Time=355368720
Frame 1: 214 bytes on wire (1712 bits), 214 bytes captured (1712 bits) on interface 0
Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1User Datagram Protocol, Src Port: 8010, Dst Port: 7010
Real-Time Transport Protocol    [Stream setup by HEUR RT (frame 1)]
        [Setup frame: 1] 
       [Setup Method: HEUR RT]
    10.. .... = Version: RFC 1889 Version (2)
    ..0. .... = Padding: False
    ...0 .... = Extension: False
    .... 0000 = Contributing source identifiers count: 0   
   0... .... = Marker: False
    Payload type: ITU-T G.711 PCMU (0)
    Sequence number: 58366    [Extended sequence number: 58366]
    Timestamp: 355368720
    Synchronization Source identifier: 0x6b8b4567 (1804289383)
    Payload: ffffffffffffffffffffffffffffffffffffffffffffffff...

0000  00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00   ..............E.
0010  00 c8 3c 69 40 00 40 11 ff b9 7f 00 00 01 7f 00   ..<i@.@.........
0020  00 01 1f 4a 1b 62 00 b4 fe c7 80 00 e3 fe 15 2e   ...J.b..........
0030  7f 10 6b 8b 45 67 ff ff ff ff ff ff ff ff ff ff   ..k.Eg..........
0040  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0050  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0060  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0070  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0080  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
0090  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00a0  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00b0  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00c0  ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff   ................
00d0  ff ff ff ff ff ff                                  ......

Järgmise artikli pühendame selles loendis sisalduva teabe analüüsimisele ja räägime paratamatult RTP-paketi sisemisest struktuurist.

Allikas: www.habr.com

Lisa kommentaar