Utilisation de Zabbix pour surveiller la base de données MS SQL Server

Avant-propos

Il est souvent nécessaire de signaler en temps réel à l'administrateur les problèmes liés à la base de données (base de données).

Cet article décrira ce qui doit être configuré dans Zabbix pour surveiller une base de données MS SQL Server.

Veuillez noter que les détails sur la façon de configurer ne seront pas donnés, cependant, des formules et des recommandations générales, ainsi qu'une description détaillée de l'ajout d'éléments de données personnalisés via des procédures stockées seront données dans cet article.
De plus, seuls les principaux compteurs de performances seront abordés ici.

décision

Tout d'abord, je vais décrire tous ces compteurs de performances (via des éléments de données dans Zabbix) dont nous avons besoin :

  1. Disque logique
    1. Moy. disque sec/lecture
      Affiche le temps moyen, exprimé en secondes, de lecture des données du disque. Valeur moyenne du compteur de performances moyenne. Disque sec/lecture ne doit pas dépasser 10 millisecondes. Valeur maximale du compteur de performance Moy. Disque sec/lecture ne doit pas dépasser 50 millisecondes.

      Zabbix: perf_counter[LogicalDisk(_Total)Avg. Disk sec/Read], et il est également important de garder une trace du disque souhaité, par exemple comme ceci : perf_counter[LogicalDisk(C:)Avg. Disque sec/Lecture]

      Exemples de déclencheurs:
      {NODE_NAME:perf_counter[LogicalDisk(_Total)Moy. Disk sec/Read].last()}>0.005, niveau élevé
      и
      {NODE_NAME:perf_counter[LogicalDisk(_Total)Moy. Disque sec/Lecture].last()}>0.0025, niveau moyen

    2. Moy. disque sec/écriture
      Affiche le temps moyen, exprimé en secondes, pour écrire des données sur le disque. Valeur moyenne du compteur de performances moyenne. Disque sec/écriture ne doit pas dépasser 10 millisecondes. Valeur maximale du compteur de performance Moy. Disque sec/écriture ne doit pas dépasser 50 millisecondes.

      Zabbix: perf_counter[LogicalDisk(_Total)Avg. Disk sec/Write], et il est également important de garder une trace du disque souhaité, par exemple comme ceci : perf_counter[LogicalDisk(C:)Avg. Disque sec/écriture]

      Exemples de déclencheurs:
      {NODE_NAME:perf_counter[LogicalDisk(_Total)Moy. Disque sec/écriture].last()}>0.005, niveau élevé
      и
      {NODE_NAME:perf_counter[LogicalDisk(_Total)Moy. Disque sec/écriture].last()}>0.0025, niveau moyen

    3. Longueur moyenne de la file d'attente du disque

      Longueur moyenne de la file d'attente des requêtes sur le disque. Affiche le nombre de requêtes de disque en attente de traitement dans un intervalle de temps spécifié. Une file d'attente ne dépassant pas 2 pour un seul disque est considérée comme normale. S'il y a plus de deux requêtes dans la file d'attente, le disque peut être surchargé et ne peut pas traiter les requêtes entrantes. Vous pouvez savoir exactement quelles opérations le disque ne peut pas gérer à l'aide des compteurs Avg. Longueur de la file d'attente de lecture du disque et moyenne. Longueur de la file d'attente Disk Wright (file d'attente des demandes d'écriture).
      Valeur moyenne La longueur de la file d'attente du disque n'est pas mesurée, mais est calculée à l'aide de la loi de Little issue de la théorie mathématique des files d'attente. Selon cette loi, le nombre de requêtes en attente de traitement est, en moyenne, égal à la fréquence des requêtes multipliée par le temps de traitement des requêtes. Ceux. dans notre cas Moy. Longueur de la file d'attente du disque = (Transferts de disque/s) * (Moyenne en secondes de disque/Transfert).

      Moy. La longueur de la file d'attente du disque est considérée comme l'un des principaux compteurs permettant de déterminer la charge sur le sous-système de disque. Cependant, pour l'évaluer correctement, il est nécessaire de représenter avec précision la structure physique du système de stockage. Par exemple, pour un seul disque dur, une valeur supérieure à 2 est considérée comme critique, et si le disque est situé sur une matrice RAID de 4 disques, vous devez alors vous inquiéter si la valeur est supérieure à 4*2=8.

      Zabbix: perf_counter[LogicalDisk(_Total)Avg. Longueur de la file d'attente du disque], et il est également important de garder une trace du disque souhaité, par exemple comme ceci : perf_counter[LogicalDisk(C:)Avg. Longueur de la file d'attente du disque]

  2. Mémoire
    1. Pages/s
      Affiche le nombre de pages que SQL Server a lu à partir du disque ou écrit sur le disque pour résoudre les accès aux pages de mémoire qui n'étaient pas chargées dans la RAM au moment de l'accès. Cette valeur est la somme des pages d'entrée/s et des pages de sortie/s, et prend également en compte la pagination (pagination/échange) du cache système pour accéder aux fichiers de données d'application. De plus, cela inclut la pagination des fichiers non mis en cache qui sont directement mappés en mémoire. Il s'agit du compteur principal qui doit être surveillé si vous rencontrez une utilisation élevée de la mémoire et une pagination excessive associée. Ce compteur caractérise la quantité d'échange et sa valeur normale (et non maximale) doit être proche de zéro. Une augmentation du swap indique la nécessité d'augmenter la RAM ou de réduire le nombre de programmes d'application exécutés sur le serveur.

      Zabbix: perf_counter[Pages mémoire/sec] Exemple de déclencheur:
      {NODE_NAME:perf_counter[MemoryPages/sec].min(5m)}>1000 XNUMX, informations sur le niveau

    2. Défauts de page/s

      Il s'agit de la valeur du compteur de défauts de page. Une erreur de page se produit lorsqu'un processus fait référence à une page de mémoire virtuelle qui ne se trouve pas dans l'ensemble de travail de la RAM. Ce compteur prend en compte à la fois les défauts de page qui nécessitent un accès au disque et ceux provoqués par le fait que la page se trouve en dehors de l'ensemble de travail dans la RAM. La plupart des processeurs peuvent gérer les erreurs de page de type XNUMX sans trop de délai. Cependant, la gestion des erreurs de page de type XNUMX qui nécessitent un accès au disque peut entraîner des retards importants.

      Zabbix: perf_counter[Défauts de page mémoire/s] Exemple de déclencheur:
      {NODE_NAME:perf_counter[MemoryPage Faults/sec].min(5m)}>1000 XNUMX, informations sur le niveau

    3. Octets disponibles

      Assure le suivi de la quantité de mémoire disponible en octets pour l'exécution des différents processus. Des lectures faibles indiquent une mémoire faible. La solution est d'augmenter la mémoire. Ce compteur doit dans la plupart des cas être constamment au-dessus de 5000 kV.
      Il est judicieux de définir manuellement le seuil de Mo disponibles pour les raisons suivantes :

      • 50 % de mémoire libre disponible = Excellent
      • 25 % de mémoire disponible = nécessite une attention particulière
      • 10 % gratuits = problèmes possibles
      •Moins de 5% de mémoire disponible = Critique pour la vitesse, vous devez intervenir.
      Zabbix: perf_counter[Octets disponibles en mémoire]

  3. Processeur (total) : % de temps processeur
    Ce compteur indique le pourcentage de temps pendant lequel le processeur a été occupé à exécuter des opérations pour des threads non inactifs. Cette valeur peut être considérée comme la proportion de temps passé à effectuer un travail utile. Chaque processeur peut être affecté à un thread inactif, qui consomme des cycles de processeur improductifs non utilisés par d'autres threads. Ce compteur se caractérise par des pics courts pouvant atteindre 100 pour cent. Cependant, s'il y a des périodes prolongées pendant lesquelles l'utilisation du processeur est supérieure à 80 %, le système sera alors plus efficace en utilisant davantage de processeurs.

    Zabbix: perf_counter[Processor(_Total)% Processor Time], ici il peut également être affiché par cœur
    Exemple de déclencheur:
    {NODE_NAME:perf_counter[Processor(_Total)% Processor Time].min(5m)}>80, informations sur le niveau

  4. Interface réseau (*) : % octets total/sec
    Nombre total d'octets envoyés et reçus par seconde sur toutes les interfaces. Il s'agit de la bande passante de l'interface (en octets). Il faut comparer la valeur de ce compteur avec la bande passante maximale de la carte réseau. En général, ce compteur ne doit pas afficher plus de 50 % d'utilisation de la bande passante de la carte réseau.
    Zabbix: perf_counter[Interface réseau (*)Octets envoyés/sec]
  5. MS SQL Server : méthodes d'accès
    L'objet Méthodes d'accès dans SQL Server fournit des compteurs pour aider à suivre l'accès aux données logiques dans une base de données. L'accès physique aux pages de la base de données sur le disque est contrôlé à l'aide de compteurs du gestionnaire de mémoire tampon. La surveillance des méthodes d'accès aux données dans la base de données permet de déterminer si les performances des requêtes peuvent être améliorées en ajoutant ou en modifiant des index, en ajoutant ou en déplaçant des partitions, en ajoutant des fichiers ou des groupes de fichiers, en défragmentant des index ou en modifiant le texte de la requête. De plus, vous pouvez utiliser les compteurs d'objets des méthodes d'accès pour surveiller la taille des données, les index et l'espace libre dans votre base de données, en surveillant la capacité et la fragmentation de chaque instance de serveur. Une fragmentation excessive des index peut réduire considérablement les performances.

    1. Divisions de page/s
      Nombre de fractionnements de page par seconde effectués à la suite d'un débordement de page d'index. Une valeur élevée pour cette métrique signifie que lors de l'exécution d'opérations d'insertion et de mise à jour sur des données, SQL Server doit effectuer un grand nombre d'opérations gourmandes en ressources pour diviser les pages et déplacer une partie d'une page existante vers un nouvel emplacement. De telles opérations doivent être évitées autant que possible. Vous pouvez essayer de résoudre le problème de deux manières :
      - créer un index clusterisé pour les colonnes à incrémentation automatique. Dans ce cas, les nouveaux enregistrements ne seront pas placés dans des pages déjà occupées par des données, mais occuperont séquentiellement de nouvelles pages ;
      — reconstruire les index en augmentant la valeur du paramètre Fillfactor. Cette option vous permet de réserver de l'espace libre dans les pages d'index qui sera utilisé pour accueillir de nouvelles données, sans avoir besoin d'opérations de fractionnement de page.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME: Méthodes d'accès Divisions de page/s",30] Exemple de déclencheur: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Access MethodsPage Splits/sec",30].last()}>{NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:SQL StatisticsBatch Requests/sec",30].last()} /5, informations sur le niveau
    2. Analyses complètes/s
      Nombre illimité d'analyses complètes par seconde. Ces opérations incluent des analyses de table principale et des analyses d'index complet. Une augmentation stable de cet indicateur peut indiquer une dégradation du système (manque d'index nécessaires, leur forte fragmentation, échec de l'optimiseur à utiliser les index existants, présence d'index inutilisés). Cependant, il convient de noter qu'une analyse complète dans de petites tables n'est pas toujours mauvaise, car si vous pouvez placer la table entière dans la RAM, une analyse complète sera alors plus rapide. Mais dans la plupart des cas, une augmentation stable de ce compteur indiquera une dégradation du système. Tout cela s'applique uniquement aux systèmes OLTP. Dans les systèmes OLAP, des analyses complètes constantes sont normales.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Méthodes d'accèsAnalyses complètes/s",30]

  6. MS SQL Server : gestionnaire de tampons
    L'objet Buffer Manager fournit des compteurs qui vous aident à surveiller la manière dont SQL Server utilise les ressources suivantes :
    — mémoire pour stocker les pages de données ;
    - des compteurs qui surveillent les E/S physiques lorsque SQL Server lit et écrit des pages de base de données ;
    — extension du pool de mémoire tampon pour étendre le cache tampon à l'aide d'une mémoire non volatile rapide, telle que des disques SSD (Solid State Drives) ;
    - La surveillance de la mémoire et des compteurs utilisés par SQL Server permet d'obtenir les informations suivantes :
    — s'il existe des goulots d'étranglement causés par un manque de mémoire physique. Si les données fréquemment consultées ne peuvent pas être stockées dans le cache, SQL Server est obligé de les lire à partir du disque ;
    Est-il possible d'améliorer les performances des requêtes en augmentant la quantité de mémoire ou en allouant de la mémoire supplémentaire pour mettre en cache les données ou stocker les structures internes de SQL Server ?
    - à quelle fréquence SQL Server lit les données du disque. Par rapport à d’autres opérations telles que l’accès à la mémoire, les E/S physiques prennent plus de temps. La réduction des E/S peut améliorer les performances des requêtes.

    1. Buffer Cache a frappé la radio
      Indique la quantité de données que SQL Server peut contenir dans le tampon de cache. Plus cette valeur est élevée, mieux c'est, car Pour que SQL Server puisse accéder efficacement aux pages de données, celles-ci doivent se trouver dans un tampon de cache et il ne doit y avoir aucune opération d'entrée/sortie (E/S) physique. Si vous constatez une baisse constante de la valeur moyenne de ce compteur, vous devriez envisager d'ajouter de la RAM. Cet indicateur doit toujours être supérieur à 90 % pour les systèmes OLTP et supérieur à 50 % pour les systèmes OLAP.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Buffer ManagerBuffer cache hit ratio",30] Exemples de déclencheurs: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Buffer ManagerBuffer cache hit ratio",30].last()}<70, niveau élevé
      и
      {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Buffer ManagerBuffer cache hit ratio",30].last()}<80, niveau moyen
    2. Espérance de vie des pages
      Indique combien de temps la page restera en permanence en mémoire dans son état actuel. Si la valeur continue de baisser, cela signifie que le système abuse du pool de mémoire tampon. Par conséquent, les performances de la mémoire pourraient potentiellement entraîner des problèmes entraînant de mauvaises performances. Il est à noter qu'il n'existe pas d'indicateur universel en dessous duquel on peut clairement juger que le système abuse du pool de tampons (l'indicateur de 300 secondes est obsolète depuis MS SQL Server 2012).
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Espérance de vie de la page Buffer Manager",30] Exemple de déclencheur: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Buffer ManagerPage espérance de vie",30].last()}<5, information de niveau

  7. MS SQL Server : statistiques générales
    L'objet Statistiques générales de SQL Server fournit des compteurs qui vous permettent de surveiller l'activité globale du serveur, comme le nombre de connexions simultanées et le nombre d'utilisateurs par seconde se connectant ou se déconnectant de l'ordinateur exécutant l'instance de SQL Server. Ces métriques sont utiles dans les grands systèmes de traitement des transactions en ligne (OLTP) dans lesquels un grand nombre de clients se connectent et se déconnectent constamment d'une instance de SQL Server.

    1. Processus bloqué
      Le nombre de processus actuellement bloqués.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Statistiques généralesProcessus bloqués",30] Exemple de déclencheur: ({NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Statistiques généralesProcessus bloqués",30].min(2m,0)}>=0)
      et ({NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Processus de statistiques générales bloqués",30].time(0)}>=50000)
      et ({NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:General StatisticsProcesses bloqués",30].time(0)}<=230000), niveau d'information (ici il y a une restriction de signalisation de 05h00 à 23h00)
    2. Connexions utilisateur
      Nombre d'utilisateurs actuellement connectés à SQL Server.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Statistiques généralesConnexions utilisateur",30]

  8. MS SQL Server : verrous
    L'objet Locks dans Microsoft SQL Server fournit des informations sur les verrous SQL Server acquis pour des types de ressources individuels. Des verrous sont émis sur les ressources SQL Server, telles que les lignes lues ou modifiées par une transaction, pour empêcher plusieurs transactions d'utiliser la ressource en même temps. Par exemple, si un verrou exclusif (X) est acquis par une transaction sur une ligne d'une table, aucune autre transaction ne peut modifier cette ligne jusqu'à ce que le verrou soit libéré. La réduction de l’utilisation des verrous augmente la simultanéité, ce qui peut améliorer les performances globales. Plusieurs instances de l'objet Locks peuvent être suivies en même temps, chacune représentant un verrou sur un type de ressource distinct.

    1. Temps d'attente moyen (ms)
      Durée d'attente moyenne (en millisecondes) pour toutes les demandes de verrouillage nécessitant une attente. Ce compteur indique combien de temps, en moyenne, les processus utilisateur doivent attendre dans la file d'attente pour acquérir un verrou sur une ressource. La valeur maximale autorisée de ce compteur dépend entièrement de votre tâche ; il est difficile de déterminer une valeur moyenne pour toutes les applications. Si ce compteur est trop élevé, cela peut indiquer des problèmes de verrouillage dans votre base de données.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Temps d'attente moyen (ms)",30] Exemple de déclencheur: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Temps d'attente moyen (ms)",30].last()}>=500, informations de niveau
    2. Temps d'attente du verrouillage (ms)
      Temps d'attente total du verrouillage (en millisecondes) au cours de la dernière seconde.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Temps d'attente du verrouillage (ms)",30]
    3. Attentes de verrouillage/s
      Nombre de fois au cours de la dernière seconde où un thread a dû attendre en raison d'une demande de verrouillage.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Attentes de verrouillage/s",30]
    4. Délais d'expiration du verrouillage/s
      Nombre de fois où le verrou ne peut pas être acquis par round robin. La valeur du paramètre de configuration du compteur de rotations SQL Server détermine le nombre de fois qu'un thread peut tourner avant d'expirer et de devenir inactif.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Délai d'expiration du verrouillage/s",30] Exemple de déclencheur: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Locks(_Total)Lock Timeouts/sec",30].last()}>1000, informations de niveau
    5. Requêtes de verrouillage/s
      Nombre de requêtes par seconde du type de verrou spécifié.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Demandes de verrouillage/s",30] Exemple de déclencheur: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Lock Requests/sec",30].last()}>500000, informations de niveau
    6. Verrouiller le nombre de blocages/s
      Nombre de demandes de verrouillage par seconde qui entraînent un blocage. La présence de blocages indique des requêtes mal construites qui bloquent les ressources partagées.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Nombre de blocages/sec",30] Exemple de déclencheur: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Number of Deadlocks/sec",30].last()}>1, niveau élevé

  9. MS SQL Server : gestionnaire de mémoire
    L'objet Memory Manager dans Microsoft SQL Server fournit des compteurs pour surveiller l'utilisation de la mémoire à l'échelle du serveur. La surveillance de l'utilisation de la mémoire de l'ensemble du serveur pour évaluer l'activité des utilisateurs et l'utilisation des ressources peut aider à identifier les goulots d'étranglement des performances. La surveillance de la mémoire utilisée par une instance de SQL Server peut aider à déterminer :
    — s'il y a un manque de mémoire physique pour stocker les données fréquemment utilisées dans le cache. S'il n'y a pas assez de mémoire, SQL Server doit récupérer les données du disque ;
    - Si les performances des requêtes pourraient s'améliorer si de la mémoire était ajoutée ou si la quantité de mémoire disponible pour la mise en cache des données ou des structures internes de SQL Server était augmentée.

    1. Subventions de mémoire exceptionnelles
      Indique le nombre total de processus qui ont réussi à acquérir de la mémoire d'espace de travail. Si l'indicateur baisse régulièrement, il est nécessaire d'augmenter la RAM.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Memory ManagerMemory Grants Outstanding",30]
    2. Subventions de mémoire en attente
      Indique le nombre total de processus en attente d'allocation de mémoire de travail. Avec une croissance stable de l'indicateur, il est nécessaire d'augmenter la RAM.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Memory ManagerAttributions de mémoire en attente",30]

  10. MS SQL Server : Statistiques
    L'objet Statistics de Microsoft SQL Server fournit des compteurs pour surveiller la compilation et les types de requêtes envoyées à une instance de SQL Server. La surveillance du nombre de compilations et de recompilations de requêtes et du nombre de lots reçus par une instance de SQL Server donne un aperçu de la rapidité avec laquelle SQL Server exécute les requêtes des utilisateurs et de l'efficacité avec laquelle l'optimiseur de requêtes les traite.

    1. Requêtes par lots/s
      Nombre de paquets de commandes Transact-SQL reçus par seconde. Ces statistiques sont affectées par d'éventuelles limitations (E/S, nombre d'utilisateurs, taille du cache, complexité des requêtes, etc.). Un nombre élevé de requêtes de paquets indique un débit élevé.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:SQL StatisticsBatch Requests/sec",30]

En plus de tout ce qui précède, vous pouvez également configurer d'autres éléments de données (ainsi que créer des déclencheurs sur ceux-ci avec des notifications ultérieures). Par exemple :
1) la quantité d'espace disque libre
2) tailles des fichiers de données et des journaux de base de données
etc
Cependant, tous ces indicateurs ne montrent pas le problème des requêtes en temps réel.
Pour ce faire, vous devez créer vos propres compteurs spéciaux.
Pour des raisons de confidentialité, je ne donnerai pas d'exemples de tels compteurs. De plus, ils sont configurés de manière unique pour chaque système. Mais je note que pour des systèmes tels que 1C, NAV et CRM, des compteurs spécialisés peuvent être créés en collaboration avec les développeurs concernés.
Je vais donner un exemple de création d'un indicateur généralisé qui montre combien de requêtes sont en cours d'exécution et combien de requêtes sont en attente (suspendues ou bloquées) à chaque instant.
Pour ce faire, vous devez créer une procédure stockée :
Code

USE [ИМЯ_БАЗЫ_ДАННЫХ]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [nav].[ZabbixGetCountRequestStatus]
	@Status nvarchar(255)
AS
BEGIN
	/*
		возвращает кол-во запросов с заданным статусом
	*/
	SET NOCOUNT ON;

	select count(*) as [Count]
	from sys.dm_exec_requests ER with(readuncommitted)
	where [status]=@Status
END

Ensuite, vous devez vous rendre dans le dossier où se trouve Zabbix (zabbixconfuserparams.d) et créer 2 fichiers avec l'extension ps1 (PowerShell) et écrire les codes suivants dans chacun d'eux :
Code pour exécuter des requêtes

$SQLServer = "НАЗВАНИЕ_ЭКЗЕМПЛЯРА";
$uid = "ЛОГИН"; 
$pwd = "ПАРОЛЬ";
$Status="running";

$connectionString = "Server = $SQLServer; Database=НАЗВАНИЕ_БД; Integrated Security = False; User ID = $uid; Password = $pwd;";

$connection = New-Object System.Data.SqlClient.SqlConnection;
$connection.ConnectionString = $connectionString;

#Создаем запрос непосредственно к MSSQL / Create a request directly to MSSQL
$SqlCmd = New-Object System.Data.SqlClient.SqlCommand;
$SqlCmd.CommandType = [System.Data.CommandType]::StoredProcedure;  
$SqlCmd.CommandText = "nav.ZabbixGetCountRequestStatus";
$SqlCmd.Connection = $Connection;

$paramStatus=$SqlCmd.Parameters.Add("@Status" , [System.Data.SqlDbType]::VarChar);
$paramStatus.Value = $Status;

$connection.Open();
$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter;
$SqlAdapter.SelectCommand = $SqlCmd;
$DataSet = New-Object System.Data.DataSet;
$SqlAdapter.Fill($DataSet) > $null;
$connection.Close();

$result = $DataSet.Tables[0].Rows[0]["Count"];

write-host $result;

Code pour les demandes en attente

$SQLServer = "НАЗВАНИЕ_ЭКЗЕМПЛЯРА";
$uid = "ЛОГИН"; 
$pwd = "ПАРОЛЬ";
$Status="suspended";

$connectionString = "Server = $SQLServer; Database=НАЗВАНИЕ_БД; Integrated Security = False; User ID = $uid; Password = $pwd;";

$connection = New-Object System.Data.SqlClient.SqlConnection;
$connection.ConnectionString = $connectionString;

#Создаем запрос непосредственно к MSSQL / Create a request directly to MSSQL
$SqlCmd = New-Object System.Data.SqlClient.SqlCommand;
$SqlCmd.CommandType = [System.Data.CommandType]::StoredProcedure;  
$SqlCmd.CommandText = "nav.ZabbixGetCountRequestStatus";
$SqlCmd.Connection = $Connection;

$paramStatus=$SqlCmd.Parameters.Add("@Status" , [System.Data.SqlDbType]::VarChar);
$paramStatus.Value = $Status;

$connection.Open();
$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter;
$SqlAdapter.SelectCommand = $SqlCmd;
$DataSet = New-Object System.Data.DataSet;
$SqlAdapter.Fill($DataSet) > $null;
$connection.Close();

$result = $DataSet.Tables[0].Rows[0]["Count"];

write-host $result;

Vous devez maintenant créer un fichier avec des paramètres utilisateur et une extension .conf (ou ajouter des lignes à un fichier utilisateur existant, s'il a été créé précédemment) et insérer les lignes suivantes :
UserParameter=PARAMETER_NAME_NUMBER_of_QUERIES EXECUTED,powershell -NoProfile -ExecutionPolicy Bypass -File FULL_PATHzabbixconfuserparams.dFILE_NAME_FOR_EXECUTED_QUERYES.ps1
UserParameter=PARAMETER_NAME_NUMBER_WAITING_REQUESTS,powershell -NoProfile -ExecutionPolicy Bypass -File FULL_PATHzabbixconfuserparams.dFILE_NAME_FOR_WAITING_REQUESTS.ps1
Après cela, enregistrez le fichier .conf et redémarrez l'agent Zabbix.
Après cela, nous ajoutons deux nouveaux éléments à Zabbix (dans ce cas, les noms et la clé sont les mêmes) :
PARAMETER_NAME_NUMBER OF_REQUESTS EFFECTUÉES
PARAMETER_NAME_NUMBER OF_WAITING_REQUESTS
Vous pouvez désormais créer des graphiques et des déclencheurs pour les éléments de données personnalisés créés.

Si le nombre de requêtes en attente augmente fortement, la requête suivante peut afficher toutes les requêtes en cours d'exécution et en attente à un moment donné avec des détails sur l'endroit et sous quelle connexion la requête est exécutée, le texte et le plan de requête, ainsi que d'autres détails :
Code

/*Активные, готовые к выполнению и ожидающие запросы, а также те, что явно блокируют другие сеансы*/
with tbl0 as (
select ES.[session_id]
,ER.[blocking_session_id]
,ER.[request_id]
,ER.[start_time]
,ER.[status]
,ES.[status] as [status_session]
,ER.[command]
,ER.[percent_complete]
,DB_Name(coalesce(ER.[database_id], ES.[database_id])) as [DBName]
,(select top(1) [text] from sys.dm_exec_sql_text(ER.[sql_handle])) as [TSQL]
,(select top(1) [objectid] from sys.dm_exec_sql_text(ER.[sql_handle])) as [objectid]
,(select top(1) [query_plan] from sys.dm_exec_query_plan(ER.[plan_handle])) as [QueryPlan]
,ER.[wait_type]
,ES.[login_time]
,ES.[host_name]
,ES.[program_name]
,ER.[wait_time]
,ER.[last_wait_type]
,ER.[wait_resource]
,ER.[open_transaction_count]
,ER.[open_resultset_count]
,ER.[transaction_id]
,ER.[context_info]
,ER.[estimated_completion_time]
,ER.[cpu_time]
,ER.[total_elapsed_time]
,ER.[scheduler_id]
,ER.[task_address]
,ER.[reads]
,ER.[writes]
,ER.[logical_reads]
,ER.[text_size]
,ER.[language]
,ER.[date_format]
,ER.[date_first]
,ER.[quoted_identifier]
,ER.[arithabort]
,ER.[ansi_null_dflt_on]
,ER.[ansi_defaults]
,ER.[ansi_warnings]
,ER.[ansi_padding]
,ER.[ansi_nulls]
,ER.[concat_null_yields_null]
,ER.[transaction_isolation_level]
,ER.[lock_timeout]
,ER.[deadlock_priority]
,ER.[row_count]
,ER.[prev_error]
,ER.[nest_level]
,ER.[granted_query_memory]
,ER.[executing_managed_code]
,ER.[group_id]
,ER.[query_hash]
,ER.[query_plan_hash]
,EC.[most_recent_session_id]
,EC.[connect_time]
,EC.[net_transport]
,EC.[protocol_type]
,EC.[protocol_version]
,EC.[endpoint_id]
,EC.[encrypt_option]
,EC.[auth_scheme]
,EC.[node_affinity]
,EC.[num_reads]
,EC.[num_writes]
,EC.[last_read]
,EC.[last_write]
,EC.[net_packet_size]
,EC.[client_net_address]
,EC.[client_tcp_port]
,EC.[local_net_address]
,EC.[local_tcp_port]
,EC.[parent_connection_id]
,EC.[most_recent_sql_handle]
,ES.[host_process_id]
,ES.[client_version]
,ES.[client_interface_name]
,ES.[security_id]
,ES.[login_name]
,ES.[nt_domain]
,ES.[nt_user_name]
,ES.[memory_usage]
,ES.[total_scheduled_time]
,ES.[last_request_start_time]
,ES.[last_request_end_time]
,ES.[is_user_process]
,ES.[original_security_id]
,ES.[original_login_name]
,ES.[last_successful_logon]
,ES.[last_unsuccessful_logon]
,ES.[unsuccessful_logons]
,ES.[authenticating_database_id]
,ER.[sql_handle]
,ER.[statement_start_offset]
,ER.[statement_end_offset]
,ER.[plan_handle]
,ER.[dop]
,coalesce(ER.[database_id], ES.[database_id]) as [database_id]
,ER.[user_id]
,ER.[connection_id]
from sys.dm_exec_requests ER with(readuncommitted)
right join sys.dm_exec_sessions ES with(readuncommitted)
on ES.session_id = ER.session_id 
left join sys.dm_exec_connections EC  with(readuncommitted)
on EC.session_id = ES.session_id
)
, tbl as (
select [session_id]
,[blocking_session_id]
,[request_id]
,[start_time]
,[status]
,[status_session]
,[command]
,[percent_complete]
,[DBName]
,OBJECT_name([objectid], [database_id]) as [object]
,[TSQL]
,[QueryPlan]
,[wait_type]
,[login_time]
,[host_name]
,[program_name]
,[wait_time]
,[last_wait_type]
,[wait_resource]
,[open_transaction_count]
,[open_resultset_count]
,[transaction_id]
,[context_info]
,[estimated_completion_time]
,[cpu_time]
,[total_elapsed_time]
,[scheduler_id]
,[task_address]
,[reads]
,[writes]
,[logical_reads]
,[text_size]
,[language]
,[date_format]
,[date_first]
,[quoted_identifier]
,[arithabort]
,[ansi_null_dflt_on]
,[ansi_defaults]
,[ansi_warnings]
,[ansi_padding]
,[ansi_nulls]
,[concat_null_yields_null]
,[transaction_isolation_level]
,[lock_timeout]
,[deadlock_priority]
,[row_count]
,[prev_error]
,[nest_level]
,[granted_query_memory]
,[executing_managed_code]
,[group_id]
,[query_hash]
,[query_plan_hash]
,[most_recent_session_id]
,[connect_time]
,[net_transport]
,[protocol_type]
,[protocol_version]
,[endpoint_id]
,[encrypt_option]
,[auth_scheme]
,[node_affinity]
,[num_reads]
,[num_writes]
,[last_read]
,[last_write]
,[net_packet_size]
,[client_net_address]
,[client_tcp_port]
,[local_net_address]
,[local_tcp_port]
,[parent_connection_id]
,[most_recent_sql_handle]
,[host_process_id]
,[client_version]
,[client_interface_name]
,[security_id]
,[login_name]
,[nt_domain]
,[nt_user_name]
,[memory_usage]
,[total_scheduled_time]
,[last_request_start_time]
,[last_request_end_time]
,[is_user_process]
,[original_security_id]
,[original_login_name]
,[last_successful_logon]
,[last_unsuccessful_logon]
,[unsuccessful_logons]
,[authenticating_database_id]
,[sql_handle]
,[statement_start_offset]
,[statement_end_offset]
,[plan_handle]
,[dop]
,[database_id]
,[user_id]
,[connection_id]
from tbl0
where [status] in ('suspended', 'running', 'runnable')
)
, tbl_group as (
select [blocking_session_id]
from tbl
where [blocking_session_id]<>0
group by [blocking_session_id]
)
, tbl_res_rec as (
select [session_id]
,[blocking_session_id]
,[request_id]
,[start_time]
,[status]
,[status_session]
,[command]
,[percent_complete]
,[DBName]
,[object]
,[TSQL]
,[QueryPlan]
,[wait_type]
,[login_time]
,[host_name]
,[program_name]
,[wait_time]
,[last_wait_type]
,[wait_resource]
,[open_transaction_count]
,[open_resultset_count]
,[transaction_id]
,[context_info]
,[estimated_completion_time]
,[cpu_time]
,[total_elapsed_time]
,[scheduler_id]
,[task_address]
,[reads]
,[writes]
,[logical_reads]
,[text_size]
,[language]
,[date_format]
,[date_first]
,[quoted_identifier]
,[arithabort]
,[ansi_null_dflt_on]
,[ansi_defaults]
,[ansi_warnings]
,[ansi_padding]
,[ansi_nulls]
,[concat_null_yields_null]
,[transaction_isolation_level]
,[lock_timeout]
,[deadlock_priority]
,[row_count]
,[prev_error]
,[nest_level]
,[granted_query_memory]
,[executing_managed_code]
,[group_id]
,[query_hash]
,[query_plan_hash]
,[most_recent_session_id]
,[connect_time]
,[net_transport]
,[protocol_type]
,[protocol_version]
,[endpoint_id]
,[encrypt_option]
,[auth_scheme]
,[node_affinity]
,[num_reads]
,[num_writes]
,[last_read]
,[last_write]
,[net_packet_size]
,[client_net_address]
,[client_tcp_port]
,[local_net_address]
,[local_tcp_port]
,[parent_connection_id]
,[most_recent_sql_handle]
,[host_process_id]
,[client_version]
,[client_interface_name]
,[security_id]
,[login_name]
,[nt_domain]
,[nt_user_name]
,[memory_usage]
,[total_scheduled_time]
,[last_request_start_time]
,[last_request_end_time]
,[is_user_process]
,[original_security_id]
,[original_login_name]
,[last_successful_logon]
,[last_unsuccessful_logon]
,[unsuccessful_logons]
,[authenticating_database_id]
,[sql_handle]
,[statement_start_offset]
,[statement_end_offset]
,[plan_handle]
,[dop]
,[database_id]
,[user_id]
,[connection_id]
, 0 as [is_blocking_other_session]
from tbl
union all
select tbl0.[session_id]
,tbl0.[blocking_session_id]
,tbl0.[request_id]
,tbl0.[start_time]
,tbl0.[status]
,tbl0.[status_session]
,tbl0.[command]
,tbl0.[percent_complete]
,tbl0.[DBName]
,OBJECT_name(tbl0.[objectid], tbl0.[database_id]) as [object]
,tbl0.[TSQL]
,tbl0.[QueryPlan]
,tbl0.[wait_type]
,tbl0.[login_time]
,tbl0.[host_name]
,tbl0.[program_name]
,tbl0.[wait_time]
,tbl0.[last_wait_type]
,tbl0.[wait_resource]
,tbl0.[open_transaction_count]
,tbl0.[open_resultset_count]
,tbl0.[transaction_id]
,tbl0.[context_info]
,tbl0.[estimated_completion_time]
,tbl0.[cpu_time]
,tbl0.[total_elapsed_time]
,tbl0.[scheduler_id]
,tbl0.[task_address]
,tbl0.[reads]
,tbl0.[writes]
,tbl0.[logical_reads]
,tbl0.[text_size]
,tbl0.[language]
,tbl0.[date_format]
,tbl0.[date_first]
,tbl0.[quoted_identifier]
,tbl0.[arithabort]
,tbl0.[ansi_null_dflt_on]
,tbl0.[ansi_defaults]
,tbl0.[ansi_warnings]
,tbl0.[ansi_padding]
,tbl0.[ansi_nulls]
,tbl0.[concat_null_yields_null]
,tbl0.[transaction_isolation_level]
,tbl0.[lock_timeout]
,tbl0.[deadlock_priority]
,tbl0.[row_count]
,tbl0.[prev_error]
,tbl0.[nest_level]
,tbl0.[granted_query_memory]
,tbl0.[executing_managed_code]
,tbl0.[group_id]
,tbl0.[query_hash]
,tbl0.[query_plan_hash]
,tbl0.[most_recent_session_id]
,tbl0.[connect_time]
,tbl0.[net_transport]
,tbl0.[protocol_type]
,tbl0.[protocol_version]
,tbl0.[endpoint_id]
,tbl0.[encrypt_option]
,tbl0.[auth_scheme]
,tbl0.[node_affinity]
,tbl0.[num_reads]
,tbl0.[num_writes]
,tbl0.[last_read]
,tbl0.[last_write]
,tbl0.[net_packet_size]
,tbl0.[client_net_address]
,tbl0.[client_tcp_port]
,tbl0.[local_net_address]
,tbl0.[local_tcp_port]
,tbl0.[parent_connection_id]
,tbl0.[most_recent_sql_handle]
,tbl0.[host_process_id]
,tbl0.[client_version]
,tbl0.[client_interface_name]
,tbl0.[security_id]
,tbl0.[login_name]
,tbl0.[nt_domain]
,tbl0.[nt_user_name]
,tbl0.[memory_usage]
,tbl0.[total_scheduled_time]
,tbl0.[last_request_start_time]
,tbl0.[last_request_end_time]
,tbl0.[is_user_process]
,tbl0.[original_security_id]
,tbl0.[original_login_name]
,tbl0.[last_successful_logon]
,tbl0.[last_unsuccessful_logon]
,tbl0.[unsuccessful_logons]
,tbl0.[authenticating_database_id]
,tbl0.[sql_handle]
,tbl0.[statement_start_offset]
,tbl0.[statement_end_offset]
,tbl0.[plan_handle]
,tbl0.[dop]
,tbl0.[database_id]
,tbl0.[user_id]
,tbl0.[connection_id]
, 1 as [is_blocking_other_session]
from tbl_group as tg
inner join tbl0 on tg.blocking_session_id=tbl0.session_id
)
,tbl_res_rec_g as (
select [plan_handle],
[sql_handle],
cast([start_time] as date) as [start_time]
from tbl_res_rec
group by [plan_handle],
[sql_handle],
cast([start_time] as date)
)
,tbl_rec_stat_g as (
select qs.[plan_handle]
,qs.[sql_handle]
--,cast(qs.[last_execution_time] as date)	as [last_execution_time]
,min(qs.[creation_time])					as [creation_time]
,max(qs.[execution_count])				as [execution_count]
,max(qs.[total_worker_time])				as [total_worker_time]
,min(qs.[last_worker_time])				as [min_last_worker_time]
,max(qs.[last_worker_time])				as [max_last_worker_time]
,min(qs.[min_worker_time])				as [min_worker_time]
,max(qs.[max_worker_time])				as [max_worker_time]
,max(qs.[total_physical_reads])			as [total_physical_reads]
,min(qs.[last_physical_reads])			as [min_last_physical_reads]
,max(qs.[last_physical_reads])			as [max_last_physical_reads]
,min(qs.[min_physical_reads])				as [min_physical_reads]
,max(qs.[max_physical_reads])				as [max_physical_reads]
,max(qs.[total_logical_writes])			as [total_logical_writes]
,min(qs.[last_logical_writes])			as [min_last_logical_writes]
,max(qs.[last_logical_writes])			as [max_last_logical_writes]
,min(qs.[min_logical_writes])				as [min_logical_writes]
,max(qs.[max_logical_writes])				as [max_logical_writes]
,max(qs.[total_logical_reads])			as [total_logical_reads]
,min(qs.[last_logical_reads])				as [min_last_logical_reads]
,max(qs.[last_logical_reads])				as [max_last_logical_reads]
,min(qs.[min_logical_reads])				as [min_logical_reads]
,max(qs.[max_logical_reads])				as [max_logical_reads]
,max(qs.[total_clr_time])					as [total_clr_time]
,min(qs.[last_clr_time])					as [min_last_clr_time]
,max(qs.[last_clr_time])					as [max_last_clr_time]
,min(qs.[min_clr_time])					as [min_clr_time]
,max(qs.[max_clr_time])					as [max_clr_time]
,max(qs.[total_elapsed_time])				as [total_elapsed_time]
,min(qs.[last_elapsed_time])				as [min_last_elapsed_time]
,max(qs.[last_elapsed_time])				as [max_last_elapsed_time]
,min(qs.[min_elapsed_time])				as [min_elapsed_time]
,max(qs.[max_elapsed_time])				as [max_elapsed_time]
,max(qs.[total_rows])						as [total_rows]
,min(qs.[last_rows])						as [min_last_rows]
,max(qs.[last_rows])						as [max_last_rows]
,min(qs.[min_rows])						as [min_rows]
,max(qs.[max_rows])						as [max_rows]
,max(qs.[total_dop])						as [total_dop]
,min(qs.[last_dop])						as [min_last_dop]
,max(qs.[last_dop])						as [max_last_dop]
,min(qs.[min_dop])						as [min_dop]
,max(qs.[max_dop])						as [max_dop]
,max(qs.[total_grant_kb])					as [total_grant_kb]
,min(qs.[last_grant_kb])					as [min_last_grant_kb]
,max(qs.[last_grant_kb])					as [max_last_grant_kb]
,min(qs.[min_grant_kb])					as [min_grant_kb]
,max(qs.[max_grant_kb])					as [max_grant_kb]
,max(qs.[total_used_grant_kb])			as [total_used_grant_kb]
,min(qs.[last_used_grant_kb])				as [min_last_used_grant_kb]
,max(qs.[last_used_grant_kb])				as [max_last_used_grant_kb]
,min(qs.[min_used_grant_kb])				as [min_used_grant_kb]
,max(qs.[max_used_grant_kb])				as [max_used_grant_kb]
,max(qs.[total_ideal_grant_kb])			as [total_ideal_grant_kb]
,min(qs.[last_ideal_grant_kb])			as [min_last_ideal_grant_kb]
,max(qs.[last_ideal_grant_kb])			as [max_last_ideal_grant_kb]
,min(qs.[min_ideal_grant_kb])				as [min_ideal_grant_kb]
,max(qs.[max_ideal_grant_kb])				as [max_ideal_grant_kb]
,max(qs.[total_reserved_threads])			as [total_reserved_threads]
,min(qs.[last_reserved_threads])			as [min_last_reserved_threads]
,max(qs.[last_reserved_threads])			as [max_last_reserved_threads]
,min(qs.[min_reserved_threads])			as [min_reserved_threads]
,max(qs.[max_reserved_threads])			as [max_reserved_threads]
,max(qs.[total_used_threads])				as [total_used_threads]
,min(qs.[last_used_threads])				as [min_last_used_threads]
,max(qs.[last_used_threads])				as [max_last_used_threads]
,min(qs.[min_used_threads])				as [min_used_threads]
,max(qs.[max_used_threads])				as [max_used_threads]
from tbl_res_rec_g as t
inner join sys.dm_exec_query_stats as qs with(readuncommitted) on t.[plan_handle]=qs.[plan_handle] 
and t.[sql_handle]=qs.[sql_handle] 
and t.[start_time]=cast(qs.[last_execution_time] as date)
group by qs.[plan_handle]
,qs.[sql_handle]
--,qs.[last_execution_time]
)
select t.[session_id] --Сессия
,t.[blocking_session_id] --Сессия, которая явно блокирует сессию [session_id]
,t.[request_id] --Идентификатор запроса. Уникален в контексте сеанса
,t.[start_time] --Метка времени поступления запроса
,DateDiff(second, t.[start_time], GetDate()) as [date_diffSec] --Сколько в сек прошло времени от момента поступления запроса
,t.[status] --Состояние запроса
,t.[status_session] --Состояние сессии
,t.[command] --Тип выполняемой в данный момент команды
, COALESCE(
CAST(NULLIF(t.[total_elapsed_time] / 1000, 0) as BIGINT)
,CASE WHEN (t.[status_session] <> 'running' and isnull(t.[status], '')  <> 'running') 
THEN  DATEDIFF(ss,0,getdate() - nullif(t.[last_request_end_time], '1900-01-01T00:00:00.000'))
END
) as [total_time, sec] --Время всей работы запроса в сек
, CAST(NULLIF((CAST(t.[total_elapsed_time] as BIGINT) - CAST(t.[wait_time] AS BIGINT)) / 1000, 0 ) as bigint) as [work_time, sec] --Время работы запроса в сек без учета времени ожиданий
, CASE WHEN (t.[status_session] <> 'running' AND ISNULL(t.[status],'') <> 'running') 
THEN  DATEDIFF(ss,0,getdate() - nullif(t.[last_request_end_time], '1900-01-01T00:00:00.000'))
END as [sleep_time, sec] --Время сна в сек
, NULLIF( CAST((t.[logical_reads] + t.[writes]) * 8 / 1024 as numeric(38,2)), 0) as [IO, MB] --операций чтения и записи в МБ
, CASE  t.transaction_isolation_level
WHEN 0 THEN 'Unspecified'
WHEN 1 THEN 'ReadUncommited'
WHEN 2 THEN 'ReadCommited'
WHEN 3 THEN 'Repetable'
WHEN 4 THEN 'Serializable'
WHEN 5 THEN 'Snapshot'
END as [transaction_isolation_level_desc] --уровень изоляции транзакции (расшифровка)
,t.[percent_complete] --Процент завершения работы для следующих команд
,t.[DBName] --БД
,t.[object] --Объект
, SUBSTRING(
t.[TSQL]
, t.[statement_start_offset]/2+1
,	(
CASE WHEN ((t.[statement_start_offset]<0) OR (t.[statement_end_offset]<0))
THEN DATALENGTH (t.[TSQL])
ELSE t.[statement_end_offset]
END
- t.[statement_start_offset]
)/2 +1
) as [CURRENT_REQUEST] --Текущий выполняемый запрос в пакете
,t.[TSQL] --Запрос всего пакета
,t.[QueryPlan] --План всего пакета
,t.[wait_type] --Если запрос в настоящий момент блокирован, в столбце содержится тип ожидания (sys.dm_os_wait_stats)
,t.[login_time] --Время подключения сеанса
,t.[host_name] --Имя клиентской рабочей станции, указанное в сеансе. Для внутреннего сеанса это значение равно NULL
,t.[program_name] --Имя клиентской программы, которая инициировала сеанс. Для внутреннего сеанса это значение равно NULL
,cast(t.[wait_time]/1000 as decimal(18,3)) as [wait_timeSec] --Если запрос в настоящий момент блокирован, в столбце содержится продолжительность текущего ожидания (в секундах)
,t.[wait_time] --Если запрос в настоящий момент блокирован, в столбце содержится продолжительность текущего ожидания (в миллисекундах)
,t.[last_wait_type] --Если запрос был блокирован ранее, в столбце содержится тип последнего ожидания
,t.[wait_resource] --Если запрос в настоящий момент блокирован, в столбце указан ресурс, освобождения которого ожидает запрос
,t.[open_transaction_count] --Число транзакций, открытых для данного запроса
,t.[open_resultset_count] --Число результирующих наборов, открытых для данного запроса
,t.[transaction_id] --Идентификатор транзакции, в которой выполняется запрос
,t.[context_info] --Значение CONTEXT_INFO сеанса
,cast(t.[estimated_completion_time]/1000 as decimal(18,3)) as [estimated_completion_timeSec] --Только для внутреннего использования. Не допускает значение NULL
,t.[estimated_completion_time] --Только для внутреннего использования. Не допускает значение NULL
,cast(t.[cpu_time]/1000 as decimal(18,3)) as [cpu_timeSec] --Время ЦП (в секундах), затраченное на выполнение запроса
,t.[cpu_time] --Время ЦП (в миллисекундах), затраченное на выполнение запроса
,cast(t.[total_elapsed_time]/1000 as decimal(18,3)) as [total_elapsed_timeSec] --Общее время, истекшее с момента поступления запроса (в секундах)
,t.[total_elapsed_time] --Общее время, истекшее с момента поступления запроса (в миллисекундах)
,t.[scheduler_id] --Идентификатор планировщика, который планирует данный запрос
,t.[task_address] --Адрес блока памяти, выделенного для задачи, связанной с этим запросом
,t.[reads] --Число операций чтения, выполненных данным запросом
,t.[writes] --Число операций записи, выполненных данным запросом
,t.[logical_reads] --Число логических операций чтения, выполненных данным запросом
,t.[text_size] --Установка параметра TEXTSIZE для данного запроса
,t.[language] --Установка языка для данного запроса
,t.[date_format] --Установка параметра DATEFORMAT для данного запроса
,t.[date_first] --Установка параметра DATEFIRST для данного запроса
,t.[quoted_identifier] --1 = Параметр QUOTED_IDENTIFIER для запроса включен (ON). В противном случае — 0
,t.[arithabort] --1 = Параметр ARITHABORT для запроса включен (ON). В противном случае — 0
,t.[ansi_null_dflt_on] --1 = Параметр ANSI_NULL_DFLT_ON для запроса включен (ON). В противном случае — 0
,t.[ansi_defaults] --1 = Параметр ANSI_DEFAULTS для запроса включен (ON). В противном случае — 0
,t.[ansi_warnings] --1 = Параметр ANSI_WARNINGS для запроса включен (ON). В противном случае — 0
,t.[ansi_padding] --1 = Параметр ANSI_PADDING для запроса включен (ON)
,t.[ansi_nulls] --1 = Параметр ANSI_NULLS для запроса включен (ON). В противном случае — 0
,t.[concat_null_yields_null] --1 = Параметр CONCAT_NULL_YIELDS_NULL для запроса включен (ON). В противном случае — 0
,t.[transaction_isolation_level] --Уровень изоляции, с которым создана транзакция для данного запроса
,cast(t.[lock_timeout]/1000 as decimal(18,3)) as [lock_timeoutSec] --Время ожидания блокировки для данного запроса (в секундах)
,t.[lock_timeout] --Время ожидания блокировки для данного запроса (в миллисекундах)
,t.[deadlock_priority] --Значение параметра DEADLOCK_PRIORITY для данного запроса
,t.[row_count] --Число строк, возвращенных клиенту по данному запросу
,t.[prev_error] --Последняя ошибка, происшедшая при выполнении запроса
,t.[nest_level] --Текущий уровень вложенности кода, выполняемого для данного запроса
,t.[granted_query_memory] --Число страниц, выделенных для выполнения поступившего запроса (1 страница-это примерно 8 КБ)
,t.[executing_managed_code] --Указывает, выполняет ли данный запрос в настоящее время код объекта среды CLR (например, процедуры, типа или триггера).
--Этот флаг установлен в течение всего времени, когда объект среды CLR находится в стеке, даже когда из среды вызывается код Transact-SQL
,t.[group_id]	--Идентификатор группы рабочей нагрузки, которой принадлежит этот запрос
,t.[query_hash] --Двоичное хэш-значение рассчитывается для запроса и используется для идентификации запросов с аналогичной логикой.
--Можно использовать хэш запроса для определения использования статистических ресурсов для запросов, которые отличаются только своими литеральными значениями
,t.[query_plan_hash] --Двоичное хэш-значение рассчитывается для плана выполнения запроса и используется для идентификации аналогичных планов выполнения запросов.
--Можно использовать хэш плана запроса для нахождения совокупной стоимости запросов со схожими планами выполнения
,t.[most_recent_session_id] --Представляет собой идентификатор сеанса самого последнего запроса, связанного с данным соединением
,t.[connect_time] --Отметка времени установления соединения
,t.[net_transport] --Содержит описание физического транспортного протокола, используемого данным соединением
,t.[protocol_type] --Указывает тип протокола передачи полезных данных
,t.[protocol_version] --Версия протокола доступа к данным, связанного с данным соединением
,t.[endpoint_id] --Идентификатор, описывающий тип соединения. Этот идентификатор endpoint_id может использоваться для запросов к представлению sys.endpoints
,t.[encrypt_option] --Логическое значение, указывающее, разрешено ли шифрование для данного соединения
,t.[auth_scheme] --Указывает схему проверки подлинности (SQL Server или Windows), используемую с данным соединением
,t.[node_affinity] --Идентифицирует узел памяти, которому соответствует данное соединение
,t.[num_reads] --Число пакетов, принятых посредством данного соединения
,t.[num_writes] --Число пакетов, переданных посредством данного соединения
,t.[last_read] --Отметка времени о последнем полученном пакете данных
,t.[last_write] --Отметка времени о последнем отправленном пакете данных
,t.[net_packet_size] --Размер сетевого пакета, используемый для передачи данных
,t.[client_net_address] --Сетевой адрес удаленного клиента
,t.[client_tcp_port] --Номер порта на клиентском компьютере, который используется при осуществлении соединения
,t.[local_net_address] --IP-адрес сервера, с которым установлено данное соединение. Доступен только для соединений, которые в качестве транспорта данных используют протокол TCP
,t.[local_tcp_port] --TCP-порт сервера, если соединение использует протокол TCP
,t.[parent_connection_id] --Идентифицирует первичное соединение, используемое в сеансе MARS
,t.[most_recent_sql_handle] --Дескриптор последнего запроса SQL, выполненного с помощью данного соединения. Постоянно проводится синхронизация между столбцом most_recent_sql_handle и столбцом most_recent_session_id
,t.[host_process_id] --Идентификатор процесса клиентской программы, которая инициировала сеанс. Для внутреннего сеанса это значение равно NULL
,t.[client_version] --Версия TDS-протокола интерфейса, который используется клиентом для подключения к серверу. Для внутреннего сеанса это значение равно NULL
,t.[client_interface_name] --Имя библиотеки или драйвер, используемый клиентом для обмена данными с сервером. Для внутреннего сеанса это значение равно NULL
,t.[security_id] --Идентификатор безопасности Microsoft Windows, связанный с именем входа
,t.[login_name] --SQL Server Имя входа, под которой выполняется текущий сеанс.
--Чтобы узнать первоначальное имя входа, с помощью которого был создан сеанс, см. параметр original_login_name.
--Может быть SQL Server проверка подлинности имени входа или имени пользователя домена, прошедшего проверку подлинности Windows
,t.[nt_domain] --Домен Windows для клиента, если во время сеанса применяется проверка подлинности Windows или доверительное соединение.
--Для внутренних сеансов и пользователей, не принадлежащих к домену, это значение равно NULL
,t.[nt_user_name] --Имя пользователя Windows для клиента, если во время сеанса используется проверка подлинности Windows или доверительное соединение.
--Для внутренних сеансов и пользователей, не принадлежащих к домену, это значение равно NULL
,t.[memory_usage] --Количество 8-килобайтовых страниц памяти, используемых данным сеансом
,t.[total_scheduled_time] --Общее время, назначенное данному сеансу (включая его вложенные запросы) для исполнения, в миллисекундах
,t.[last_request_start_time] --Время, когда начался последний запрос данного сеанса. Это может быть запрос, выполняющийся в данный момент
,t.[last_request_end_time] --Время завершения последнего запроса в рамках данного сеанса
,t.[is_user_process] --0, если сеанс является системным. В противном случае значение равно 1
,t.[original_security_id] --Microsoft Идентификатор безопасности Windows, связанный с параметром original_login_name
,t.[original_login_name] --SQL Server Имя входа, которую использует клиент создал данный сеанс.
--Это может быть имя входа SQL Server, прошедшее проверку подлинности, имя пользователя домена Windows, 
--прошедшее проверку подлинности, или пользователь автономной базы данных.
--Обратите внимание, что после первоначального соединения для сеанса может быть выполнено много неявных или явных переключений контекста.
--Например если EXECUTE AS используется
,t.[last_successful_logon] --Время последнего успешного входа в систему для имени original_login_name до запуска текущего сеанса
,t.[last_unsuccessful_logon] --Время последнего неуспешного входа в систему для имени original_login_name до запуска текущего сеанса
,t.[unsuccessful_logons] --Число неуспешных попыток входа в систему для имени original_login_name между временем last_successful_logon и временем login_time
,t.[authenticating_database_id] --Идентификатор базы данных, выполняющей проверку подлинности участника.
--Для имен входа это значение будет равно 0.
--Для пользователей автономной базы данных это значение будет содержать идентификатор автономной базы данных
,t.[sql_handle] --Хэш-карта текста SQL-запроса
,t.[statement_start_offset] --Количество символов в выполняемом в настоящий момент пакете или хранимой процедуре, в которой запущена текущая инструкция.
--Может применяться вместе с функциями динамического управления sql_handle, statement_end_offset и sys.dm_exec_sql_text
--для извлечения исполняемой в настоящий момент инструкции по запросу
,t.[statement_end_offset] --Количество символов в выполняемом в настоящий момент пакете или хранимой процедуре, в которой завершилась текущая инструкция.
--Может применяться вместе с функциями динамического управления sql_handle, statement_end_offset и sys.dm_exec_sql_text
--для извлечения исполняемой в настоящий момент инструкции по запросу
,t.[plan_handle] --Хэш-карта плана выполнения SQL
,t.[database_id] --Идентификатор базы данных, к которой выполняется запрос
,t.[user_id] --Идентификатор пользователя, отправившего данный запрос
,t.[connection_id] --Идентификатор соединения, по которому поступил запрос
,t.[is_blocking_other_session] --1-сессия явно блокирует другие сессии, 0-сессия явно не блокирует другие сессии
,coalesce(t.[dop], mg.[dop]) as [dop] --Степень параллелизма запроса
,mg.[request_time] --Дата и время обращения запроса за предоставлением памяти
,mg.[grant_time] --Дата и время, когда запросу была предоставлена память. Возвращает значение NULL, если память еще не была предоставлена
,mg.[requested_memory_kb] --Общий объем запрошенной памяти в килобайтах
,mg.[granted_memory_kb] --Общий объем фактически предоставленной памяти в килобайтах.
--Может быть значение NULL, если память еще не была предоставлена.
--Обычно это значение должно быть одинаковым с requested_memory_kb.
--Для создания индекса сервер может разрешить дополнительное предоставление по требованию памяти,
--объем которой выходит за рамки изначально предоставленной памяти
,mg.[required_memory_kb] --Минимальный объем памяти в килобайтах (КБ), необходимый для выполнения данного запроса.
--Значение requested_memory_kb равно этому объему или больше его
,mg.[used_memory_kb] --Используемый в данный момент объем физической памяти (в килобайтах)
,mg.[max_used_memory_kb] --Максимальный объем используемой до данного момента физической памяти в килобайтах
,mg.[query_cost] --Ожидаемая стоимость запроса
,mg.[timeout_sec] --Время ожидания данного запроса в секундах до отказа от обращения за предоставлением памяти
,mg.[resource_semaphore_id] --Неуникальный идентификатор семафора ресурса, которого ожидает данный запрос
,mg.[queue_id] --Идентификатор ожидающей очереди, в которой данный запрос ожидает предоставления памяти.
--Значение NULL, если память уже предоставлена
,mg.[wait_order] --Последовательный порядок ожидающих запросов в указанной очереди queue_id.
--Это значение может изменяться для заданного запроса, если другие запросы отказываются от предоставления памяти или получают ее.
--Значение NULL, если память уже предоставлена
,mg.[is_next_candidate] --Является следующим кандидатом на предоставление памяти (1 = да, 0 = нет, NULL = память уже предоставлена)
,mg.[wait_time_ms] --Время ожидания в миллисекундах. Значение NULL, если память уже предоставлена
,mg.[pool_id] --Идентификатор пула ресурсов, к которому принадлежит данная группа рабочей нагрузки
,mg.[is_small] --Значение 1 означает, что для данной операции предоставления памяти используется малый семафор ресурса.
--Значение 0 означает использование обычного семафора
,mg.[ideal_memory_kb] --Объем, в килобайтах (КБ), предоставленной памяти, необходимый для размещения всех данных в физической памяти.
--Основывается на оценке количества элементов
,mg.[reserved_worker_count] --Число рабочих процессов, зарезервированной с помощью параллельных запросов, а также число основных рабочих процессов, используемых всеми запросами
,mg.[used_worker_count] --Число рабочих процессов, используемых параллельных запросов
,mg.[max_used_worker_count] --???
,mg.[reserved_node_bitmap] --???
,pl.[bucketid] --Идентификатор сегмента хэша, в который кэшируется запись.
--Значение указывает диапазон от 0 до значения размера хэш-таблицы для типа кэша.
--Для кэшей SQL Plans и Object Plans размер хэш-таблицы может достигать 10007 на 32-разрядных версиях систем и 40009 — на 64-разрядных.
--Для кэша Bound Trees размер хэш-таблицы может достигать 1009 на 32-разрядных версиях систем и 4001 на 64-разрядных.
--Для кэша расширенных хранимых процедур размер хэш-таблицы может достигать 127 на 32-разрядных и 64-разрядных версиях систем
,pl.[refcounts] --Число объектов кэша, ссылающихся на данный объект кэша.
--Значение refcounts для записи должно быть не меньше 1, чтобы размещаться в кэше
,pl.[usecounts] --Количество повторений поиска объекта кэша.
--Остается без увеличения, если параметризованные запросы обнаруживают план в кэше.
--Может быть увеличен несколько раз при использовании инструкции showplan
,pl.[size_in_bytes] --Число байтов, занимаемых объектом кэша
,pl.[memory_object_address] --Адрес памяти кэшированной записи.
--Это значение можно использовать с представлением sys.dm_os_memory_objects,
--чтобы проанализировать распределение памяти кэшированного плана, 
--и с представлением sys.dm_os_memory_cache_entries для определения затрат на кэширование записи
,pl.[cacheobjtype] --Тип объекта в кэше. Значение может быть одним из следующих
,pl.[objtype] --Тип объекта. Значение может быть одним из следующих
,pl.[parent_plan_handle] --Родительский план
--данные из sys.dm_exec_query_stats брались за сутки, в которых была пара (запрос, план)
,qs.[creation_time] --Время компиляции плана
,qs.[execution_count] --Количество выполнений плана с момента последней компиляции
,qs.[total_worker_time] --Общее время ЦП, затраченное на выполнение плана с момента компиляции, в микросекундах (но с точностью до миллисекунды)
,qs.[min_last_worker_time] --Минимальное время ЦП, затраченное на последнее выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[max_last_worker_time] --Максимальное время ЦП, затраченное на последнее выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[min_worker_time] --Минимальное время ЦП, когда-либо затраченное на выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[max_worker_time] --Максимальное время ЦП, когда-либо затраченное на выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[total_physical_reads] --Общее количество операций физического считывания при выполнении плана с момента его компиляции.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_last_physical_reads] --Минимальное количество операций физического считывания за время последнего выполнения плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_last_physical_reads] --Максимальное количество операций физического считывания за время последнего выполнения плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_physical_reads] --Минимальное количество операций физического считывания за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_physical_reads] --Максимальное количество операций физического считывания за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[total_logical_writes] --Общее количество операций логической записи при выполнении плана с момента его компиляции.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_last_logical_writes] --Минимальное количество страниц в буферном пуле, загрязненных во время последнего выполнения плана.
--Если страница уже является «грязной» (т. е. измененной), операции записи не учитываются.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_last_logical_writes] --Максимальное количество страниц в буферном пуле, загрязненных во время последнего выполнения плана.
--Если страница уже является «грязной» (т. е. измененной), операции записи не учитываются.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_logical_writes] --Минимальное количество операций логической записи за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_logical_writes] --Максимальное количество операций логической записи за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[total_logical_reads] --Общее количество операций логического считывания при выполнении плана с момента его компиляции.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_last_logical_reads] --Минимальное количество операций логического считывания за время последнего выполнения плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_last_logical_reads] --Максимальное количество операций логического считывания за время последнего выполнения плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_logical_reads]	   --Минимальное количество операций логического считывания за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_logical_reads]	--Максимальное количество операций логического считывания за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[total_clr_time]	--Время, в микросекундах (но с точностью до миллисекунды),
--внутри Microsoft .NET Framework общеязыковая среда выполнения (CLR) объекты при выполнении плана с момента его компиляции.
--Объекты среды CLR могут быть хранимыми процедурами, функциями, триггерами, типами и статистическими выражениями
,qs.[min_last_clr_time] --Минимальное время, в микросекундах (но с точностью до миллисекунды),
--затраченное внутри .NET Framework объекты среды CLR во время последнего выполнения плана.
--Объекты среды CLR могут быть хранимыми процедурами, функциями, триггерами, типами и статистическими выражениями
,qs.[max_last_clr_time] --Максимальное время, в микросекундах (но с точностью до миллисекунды),
--затраченное внутри .NET Framework объекты среды CLR во время последнего выполнения плана.
--Объекты среды CLR могут быть хранимыми процедурами, функциями, триггерами, типами и статистическими выражениями
,qs.[min_clr_time] --Минимальное время, когда-либо затраченное на выполнение плана внутри объектов .NET Framework среды CLR,
--в микросекундах (но с точностью до миллисекунды).
--Объекты среды CLR могут быть хранимыми процедурами, функциями, триггерами, типами и статистическими выражениями
,qs.[max_clr_time] --Максимальное время, когда-либо затраченное на выполнение плана внутри среды CLR .NET Framework,
--в микросекундах (но с точностью до миллисекунды).
--Объекты среды CLR могут быть хранимыми процедурами, функциями, триггерами, типами и статистическими выражениями
--,qs.[total_elapsed_time] --Общее время, затраченное на выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[min_last_elapsed_time] --Минимальное время, затраченное на последнее выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[max_last_elapsed_time] --Максимальное время, затраченное на последнее выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[min_elapsed_time] --Минимальное время, когда-либо затраченное на выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[max_elapsed_time] --Максимальное время, когда-либо затраченное на выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[total_rows] --Общее число строк, возвращаемых запросом. Не может иметь значение null.
--Значение всегда равно 0, если скомпилированная в собственном коде хранимая процедура запрашивает оптимизированную для памяти таблицу
,qs.[min_last_rows] --Минимальное число строк, возвращенных последним выполнением запроса. Не может иметь значение null.
--Значение всегда равно 0, если скомпилированная в собственном коде хранимая процедура запрашивает оптимизированную для памяти таблицу
,qs.[max_last_rows] --Максимальное число строк, возвращенных последним выполнением запроса. Не может иметь значение null.
--Значение всегда равно 0, если скомпилированная в собственном коде хранимая процедура запрашивает оптимизированную для памяти таблицу
,qs.[min_rows] --Минимальное количество строк, когда-либо возвращенных по запросу во время выполнения один
--Значение всегда равно 0, если скомпилированная в собственном коде хранимая процедура запрашивает оптимизированную для памяти таблицу
,qs.[max_rows] --Максимальное число строк, когда-либо возвращенных по запросу во время выполнения один
--Значение всегда равно 0, если скомпилированная в собственном коде хранимая процедура запрашивает оптимизированную для памяти таблицу
,qs.[total_dop] --Общую сумму по степени параллелизма плана используется с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_dop] --Минимальная степень параллелизма, если время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_dop] --Максимальная степень параллелизма, если время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_dop] --Минимальная степень параллелизма этот план когда-либо используется во время одного выполнения.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_dop] --Максимальная степень параллелизма этот план когда-либо используется во время одного выполнения.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[total_grant_kb] --Общий объем зарезервированной памяти в КБ предоставить этот план, полученных с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_grant_kb] --Минимальный объем зарезервированной памяти предоставляет в КБ, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_grant_kb] --Максимальный объем зарезервированной памяти предоставляет в КБ, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_grant_kb] --Минимальный объем зарезервированной памяти в КБ предоставить никогда не получено в ходе одного выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_grant_kb] --Максимальный объем зарезервированной памяти в КБ предоставить никогда не получено в ходе одного выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[total_used_grant_kb] --Общий объем зарезервированной памяти в КБ предоставить этот план, используемый с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_used_grant_kb] --Минимальная сумма предоставления используемой памяти в КБ, если время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_used_grant_kb] --Максимальная сумма предоставления используемой памяти в КБ, если время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_used_grant_kb] --Минимальный объем используемой памяти в КБ предоставить никогда не используется при выполнении одного плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_used_grant_kb] --Максимальный объем используемой памяти в КБ предоставить никогда не используется при выполнении одного плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[total_ideal_grant_kb] --Общий объем идеальный память в КБ, оценка плана с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_ideal_grant_kb] --Минимальный объем памяти, идеальным предоставляет в КБ, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_ideal_grant_kb] --Максимальный объем памяти, идеальным предоставляет в КБ, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_ideal_grant_kb] --Минимальный объем памяти идеальный предоставления в этот план когда-либо оценка во время выполнения один КБ.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_ideal_grant_kb] --Максимальный объем памяти идеальный предоставления в этот план когда-либо оценка во время выполнения один КБ.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[total_reserved_threads] --Общая сумма по зарезервированным параллельного потоков этот план когда-либо использовавшегося с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_reserved_threads] --Минимальное число зарезервированных параллельных потоков, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_reserved_threads] --Максимальное число зарезервированных параллельных потоков, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_reserved_threads] --Минимальное число зарезервированных параллельного потоков, когда-либо использовать при выполнении одного плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_reserved_threads] --Максимальное число зарезервированных параллельного потоков никогда не используется при выполнении одного плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[total_used_threads] --Общая сумма используется параллельных потоков этот план когда-либо использовавшегося с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_used_threads] --Минимальное число используемых параллельных потоков, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_used_threads] --Максимальное число используемых параллельных потоков, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_used_threads] --Минимальное число используемых параллельных потоков, при выполнении одного плана использовали.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_used_threads] --Максимальное число используемых параллельных потоков, при выполнении одного плана использовали.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
from tbl_res_rec as t
left outer join sys.dm_exec_query_memory_grants as mg on t.[plan_handle]=mg.[plan_handle] and t.[sql_handle]=mg.[sql_handle]
left outer join sys.dm_exec_cached_plans as pl on t.[plan_handle]=pl.[plan_handle]
left outer join tbl_rec_stat_g as qs on t.[plan_handle]=qs.[plan_handle] and t.[sql_handle]=qs.[sql_handle] --and qs.[last_execution_time]=cast(t.[start_time] as date);

Permettez-moi également de vous rappeler que selon les statistiques collectées, vous pouvez obtenir les requêtes les plus difficiles :
Code

/*
creation_time - Время, когда запрос был скомпилирован. Поскольку при старте сервера кэш пустой, данное время всегда больше либо равно моменту запуска сервиса. Если время, указанное в этом столбце позже, чем предполагаемое (первое использование процедуры), это говорит о том, что запрос по тем или иным причинам был рекомпилирован.
last_execution_time - Момент фактического последнего выполнения запроса.
execution_count - Сколько раз запрос был выполнен с момента компиляции
Количество выполнений позволяет найти ошибки в алгоритмах - часто в наиболее выполняемых запросах оказываются те, которые находятся внутри каких-либо циклов однако могут быть выполнены перед самим циклом один раз. Например, получение каких-либо параметров из базы данных, не меняющихся внутри цикла.
CPU - Суммарное время использования процессора в миллисекундах. Если запрос обрабатывается параллельно, то это время может превысить общее время выполнения запроса, поскольку суммируется время использования запроса каждым ядром. Во время использования процессора включается только фактическая нагрузка на ядра, в нее не входят ожидания каких-либо ресурсов.
Очевидно, что данный показатель позволяет выявлять запросы, наиболее сильно загружающие процессор.
AvgCPUTime - Средняя загрузка процессора на один запрос. 
TotDuration - Общее время выполнения запроса, в миллисекундах.
Данный параметр может быть использован для поиска тех запросов, которые, независимо от причины выполняются "наиболее долго". Если общее время выполнения запроса существенно ниже времени CPU (с поправкой на параллелизм) - это говорит о том, что при выполнения запроса были ожидания каких-либо ресурсов. В большинстве случаев это связано с дисковой активностью или блокировками, но также это может быть сетевой интерфейс или другой ресурс. 
Полный список типов ожиданий можно посмотреть в описании представления sys.dm_os_wait_stats.
AvgDur - Среднее время выполнения запроса в миллисекундах.
Reads - Общее количество чтений.
Это пожалуй лучший агрегатный показатель, позволяющий выявить наиболее нагружающие сервер запросы.
Логическое чтение - это разовое обращение к странице данных, физические чтения не учитываются.
В рамках выполнения одного запроса, могут происходить неоднократные обращения к одной и той же странице.
Чем больше обращений к страницам, тем больше требуется дисковых чтений, памяти и, если речь идет о повторных обращениях, большее время требуется удерживать страницы в памяти.
Writes - Общее количество изменений страниц данных.
Характеризует то, как запрос "нагружает" дисковую систему операциями записи.
Следует помнить, что этот показатель может быть больше 0 не только у тех запросов, которые явно меняют данные, но также и у тех, которые сохраняют промежуточные данные в tempdb.
AggIO - Общее количество логических операций ввода-вывода (суммарно)
Как правило, количество логических чтений на порядки превышает количество операций записи, поэтому этот показатель сам по себе для анализа применим в редких случаях.
AvgIO - Среднее количество логических дисковых операций на одно выполнение запроса.
Значение данного показателя можно анализировать из следующих соображений:
Одна страница данных - это 8192 байта. Можно получить среднее количество байт данных, "обрабатываемых" данным запросом. Если этот объем превышает реальное количество данных, которые обрабатывает запрос (суммарный объем данных в используемых в запросе таблицах), это говорит о том, что был выбран заведомо плохой план выполнения и требуется заняться оптимизацией данного запроса.
Я встречал случай, когда один запрос делал количество обращений, эквивалентных объему в 5Тб, при этом общий объем данных в это БД был 300Гб, а объем данных в таблицах, задействованных в запросе не превышал 10Гб.
В общем можно описать одну причину такого поведения сервера - вместо использования индекса сервер предпочитает сканировать таблицу или наоборот.
Если объем логических чтений в разы превосходит общие объем данных, то это вызвано повторным обращениям к одним и тем же страницам данных. Помимо того, что в одном запросе таблица может быть использована несколько раз, к одним и тем же страницам сервер обращается например в случаях, когда используется индекс и по результатам поиска по нему, найденные некоторые строки данных лежат на одной и той же странице. Конечно, в таком случае предпочтительным могло бы быть сканирование таблицы - в этом случае сервер обращался бы к каждой странице данных только один раз. Однако этому часто мешают... попытки оптимизации запросов, когда разработчик явно указывает, какой индекс или тип соединения должен быть использован.
Обратный случай - вместо использования индекса было выбрано сканирование таблицы. Как правило, это связано с тем, что статистика устарела и требуется её обновление. Однако и в этом случае причиной неудачно выбранного плана вполне могут оказаться подсказки оптимизатору запросов.
query_text - Текст самого запроса
database_name - Имя базы данных, в находится объект, содержащий запрос. NULL для системных процедур
object_name - Имя объекта (процедуры или функции), содержащего запрос.
*/
with s as (
select  creation_time,
last_execution_time,
execution_count,
total_worker_time/1000 as CPU,
convert(money, (total_worker_time))/(execution_count*1000)as [AvgCPUTime],
qs.total_elapsed_time/1000 as TotDuration,
convert(money, (qs.total_elapsed_time))/(execution_count*1000)as [AvgDur],
total_logical_reads as [Reads],
total_logical_writes as [Writes],
total_logical_reads+total_logical_writes as [AggIO],
convert(money, (total_logical_reads+total_logical_writes)/(execution_count + 0.0))as [AvgIO],
[sql_handle],
plan_handle,
statement_start_offset,
statement_end_offset
from sys.dm_exec_query_stats as qs with(readuncommitted)
where convert(money, (qs.total_elapsed_time))/(execution_count*1000)>=100 --выполнялся запрос не менее 100 мс
)
select
s.creation_time,
s.last_execution_time,
s.execution_count,
s.CPU,
s.[AvgCPUTime],
s.TotDuration,
s.[AvgDur],
s.[Reads],
s.[Writes],
s.[AggIO],
s.[AvgIO],
--st.text as query_text,
case 
when sql_handle IS NULL then ' '
else(substring(st.text,(s.statement_start_offset+2)/2,(
case
when s.statement_end_offset =-1 then len(convert(nvarchar(MAX),st.text))*2      
else s.statement_end_offset    
end - s.statement_start_offset)/2  ))
end as query_text,
db_name(st.dbid) as database_name,
object_schema_name(st.objectid, st.dbid)+'.'+object_name(st.objectid, st.dbid) as [object_name],
sp.[query_plan],
s.[sql_handle],
s.plan_handle
from s
cross apply sys.dm_exec_sql_text(s.[sql_handle]) as st
cross apply sys.dm_exec_query_plan(s.[plan_handle]) as sp

Vous pouvez également écrire pour MySQL. Pour ce faire, vous devez installer mysql-connecteur-net puis écrivez du code comme ceci :
Code pour les demandes en attente

#Задаем переменные для подключение к MySQL и само подключение
[string]$sMySQLUserName = 'UserName'
[string]$sMySQLPW = 'UserPassword'
[string]$sMySQLDB = 'db'
[string]$sMySQLHost = 'IP-address'
[void][System.Reflection.Assembly]::LoadWithPartialName("MySql.Data");
[string]$sConnectionString = "server="+$sMySQLHost+";port=3306;uid=" + $sMySQLUserName + ";pwd="+"'" + $sMySQLPW +"'"+ ";database="+$sMySQLDB;
#Open a Database connection
$oConnection = New-Object MySql.Data.MySqlClient.MySqlConnection($sConnectionString)
$Error.Clear()
try
{
$oConnection.Open()
}
catch
{
write-warning ("Could not open a connection to Database $sMySQLDB on Host $sMySQLHost. Error: "+$Error[0].ToString())
}
#The first query
# Get an instance of all objects need for a SELECT query. The Command object
$oMYSQLCommand = New-Object MySql.Data.MySqlClient.MySqlCommand;
# DataAdapter Object
$oMYSQLDataAdapter = New-Object MySql.Data.MySqlClient.MySqlDataAdapter;
# And the DataSet Object
$oMYSQLDataSet = New-Object System.Data.DataSet;
# Assign the established MySQL connection
$oMYSQLCommand.Connection=$oConnection;
# Define a SELECT query
$oMYSQLCommand.CommandText='query';
$oMYSQLDataAdapter.SelectCommand=$oMYSQLCommand;
# Execute the query
$count=$oMYSQLDataAdapter.Fill($oMYSQLDataSet, "data");
$result = $oMYSQLDataSet.Tables[0].Rows[0]["Count"];
write-host $result;

Résultat

Cet article a examiné un exemple de compteurs de performances (éléments de données) dans Zabbix. Cette approche permet aux administrateurs d'être informés de divers problèmes en temps réel ou après un certain temps. Ainsi, cette approche nous permet de minimiser l'apparition d'un problème critique à l'avenir et d'arrêter le fonctionnement du SGBD et du serveur, ce qui protège à son tour la production contre l'arrêt des processus de travail.
Article précédent: Travail de routine avec la base de données du système d'information 24h/7 et XNUMXj/XNUMX dans MS SQL Server

Sources:

» Zabbix3.4
» Compteurs de performances
» Performance Center pour Azure SQL Database et le moteur de base de données SQL Server
» Mode de vie SQL
» Compétences SQL
» TechNet Microsoft
» Analyser l'utilisation de la mémoire
» Analyse de performance
» Documentation SQL
» Remarques sur Windows

Source: habr.com

Ajouter un commentaire