Adaptive eriya tsararrun: yaya yake aiki? (Basic)

Kyakkyawan lokaci na rana.

Na shafe ƴan shekaru da suka gabata bincike da ƙirƙirar algorithms daban-daban don sarrafa siginar sararin samaniya a cikin tsararrun eriya, kuma na ci gaba da yin hakan a matsayin wani ɓangare na aikina na yanzu. Anan zan so in raba ilimi da dabaru da na gano wa kaina. Ina fatan wannan zai zama da amfani ga mutanen da suka fara nazarin wannan yanki na sarrafa sigina ko waɗanda ke da sha'awar kawai.

Menene tsararrun eriya mai daidaitawa?

Antenna tsararru – wannan saitin abubuwan eriya ne da aka sanya a sarari ta wata hanya. Sauƙaƙan tsarin tsararrun eriya mai daidaitawa, wanda za mu yi la'akari da shi, ana iya wakilta ta cikin tsari mai zuwa:
Adaptive eriya tsararrun: yaya yake aiki? (Basic)

Yawancin eriya masu daidaitawa ana kiran su “smart” antennas (Smart eriya). Abin da ke sa tsararrun eriya ta zama “mai wayo” ita ce sashin sarrafa siginar sararin samaniya da algorithms da aka aiwatar a cikinsa. Waɗannan algorithms suna nazarin siginar da aka karɓa kuma su samar da saitin ma'auni na ma'auni $inline$w_1…w_N$inline$, wanda ke ƙayyade girman siginar da farkon matakin kowane kashi. Rarraba girman lokaci-lokaci yana ƙayyade tsarin radiation gaba daya lattice gaba daya. Ikon haɗa nau'in radiation na siffar da ake buƙata da canza shi yayin sarrafa siginar yana ɗaya daga cikin manyan fasalulluka na tsararrun eriya masu daidaitawa, wanda ke ba da damar warware matsaloli da yawa. kewayon ayyuka. Amma abubuwa na farko.

Ta yaya ake ƙirƙirar ƙirar radiation?

Tsarin jagora yana nuna ikon siginar da ke fitowa a wata hanya. Don sauƙi, muna ɗauka cewa abubuwan lattice sune isotropic, watau. ga kowannensu, ikon siginar da aka fitar baya dogara da alkibla. Ana samun haɓakawa ko rage ƙarfin ƙarfin da grating ɗin ke fitarwa a wata hanya ta musamman saboda tsangwama igiyoyin lantarki suna fitarwa ta abubuwa daban-daban na tsararrun eriya. Tsayayyen tsarin tsangwama don igiyoyin lantarki na lantarki yana yiwuwa ne kawai idan sun kasance daidaituwa, i.e. Bambancin lokaci na sigina bai kamata ya canza akan lokaci ba. Da kyau, kowane nau'in tsararrun eriya ya kamata ya haskaka siginar jituwa akan mitar mai ɗaukar kaya $inline$f_{0}$inline$. Koyaya, a aikace dole mutum yayi aiki tare da sigina kunkuntar da ke da bakan iyaka na iyaka $inline$Delta f <<f_{0}$inline$.
Bari duk abubuwan AR su fitar da sigina iri ɗaya tare da hadaddun amplitude $inline$x_n(t)=u(t)$inline$. Sa'an nan kuma m a mai karɓa, siginar da aka karɓa daga ɓangaren n-th za a iya wakilta a ciki nazari form:

$$ nuni $$a_n (t) = u(t-tau_n)e^{i2pi f_0(t-tau_n)}$$ nuni$$

inda $inline$tau_n$inline $ shine jinkirta yada sigina daga sashin eriya zuwa wurin karba.
Irin wannan sigina shine "Kwasi-harmonic", kuma don gamsar da yanayin haɗin kai, ya zama dole cewa matsakaicin jinkiri a cikin yaduwar raƙuman ruwa na lantarki tsakanin kowane abu biyu ya fi ƙasa da yanayin lokacin canzawa a cikin ambulaf ɗin siginar $ inline$T$inline $, watau. $inline$u(t-tau_n) ≈ u(t-tau_m)$inline$. Don haka, ana iya rubuta sharadi na daidaituwar siginar ƙunci kamar haka:

$$display$$T≈frac{1}{Delta f}>>frac{D_{max}}{c}=max(tau_k-tau_m) $$ nuni$$

inda $inline$D_{max}$inline$ shine mafi girman nisa tsakanin abubuwan AR, kuma $inline$с$inline$ shine saurin haske.

Lokacin da aka karɓi sigina, ana yin taƙaitaccen jimla ta lambobi a cikin sashin sarrafa sarari. A wannan yanayin, ƙayyadaddun ƙimar siginar dijital a fitowar wannan toshe an ƙaddara ta hanyar magana:

$$ nuni$$y=sum_{n=1}^Nw_n^*x_n$$ nunawa$$

Ya fi dacewa don wakiltar magana ta ƙarshe a cikin sigar samfurin digo N-dimensional complex vectors a cikin sigar matrix:

$$ nuni$$y=(textbf{w},textbf{x})=textbf{w}^Htextbf{x}$$display$$

inda w и x su ne ginshiƙi vectors, kuma $inline$(.)^H$inline$ shine aiki Hamisa conjugation.

Wakilin sigina na vector yana ɗaya daga cikin na asali yayin aiki tare da tsararrun eriya, saboda sau da yawa yana ba ka damar kauce wa m lissafin lissafi. Bugu da ƙari, gano siginar da aka karɓa a wani lokaci a cikin lokaci tare da vector sau da yawa yana ba mutum damar zayyanawa daga ainihin tsarin jiki kuma ya fahimci ainihin abin da ke faruwa daga ma'anar lissafi.

Don ƙididdige ƙirar radiyo na tsararrun eriya, kuna buƙatar “ƙaddamar da” a hankali da kuma bi da bi. igiyoyin jirgin sama daga dukkan hanyoyi masu yiwuwa. A wannan yanayin, da darajar da vector abubuwa x ana iya wakilta ta cikin siga mai zuwa:

$$display$$x_n=s_n=exp{-i(textbf{k}(phi,theta),textbf{r}_n)}$$ nuni$$

inda k - igiyar ruwa vector, $inline$phi$inline$ da $inline$theta$inline$ - azimuth kwana и kusurwar girma, yana kwatanta alkiblar isowar igiyar jirgin sama, $inline$textbf{r}_n$inline$ shine daidaitawar sigar eriya, $inline$s_n$inline$ shine kashi na phasing vector. s kalaman jirgin sama tare da vector k (a cikin wallafe-wallafen Turanci ana kiran vector mai ɗaukar nauyi). Dogara na girman murabba'i na yawa y daga $inline$phi$inline$ da $inline$theta$inline$ suna ƙayyade tsarin radiyo na tsararrun eriya don liyafar da aka ba vector na ma'aunin nauyi. w.

Siffofin ƙirar eriya tsararrun radiyo

Ya dace a yi nazarin gabaɗayan kaddarorin tsarin radiation na eriya a kan tsararrun eriyar madaidaiciyar madaidaiciya a cikin jirgin sama na kwance (watau tsarin ya dogara ne kawai akan kusurwar azimuthal $inline$phi$inline $). Mai dacewa daga ra'ayoyi biyu: ƙididdiga na nazari da gabatarwar gani.

Bari mu ƙididdige DN don ma'aunin nauyi na raka'a ($ layi $w_n=1, n = 1 ... N$inline$), bin bayanin da aka kwatanta. mafi girma kusanci.
Math a nanAdaptive eriya tsararrun: yaya yake aiki? (Basic)
Hasashen vector na igiyar igiyar ruwa zuwa ga madaidaicin axis: $inline$k_v=-frac{2pi}{lambda}sinphi$inline$
Haɗin kai tsaye na ɓangaren eriya tare da fihirisa n: $inline$r_{nv}=(n-1)d$inline$
Yana da d - lokacin tsararrun eriya (nisa tsakanin abubuwan da ke kusa), λ - tsawon zango. Duk sauran abubuwan vector r daidai suke da sifili.
Ana yin rikodin siginar da aka karɓa ta hanyar tsararrun eriya a cikin tsari mai zuwa:

$$display$$y=sum_{n=1}^{N}1 ⋅exp{i2pi nfrac{d}{lambda}sinphi}$$ nuni$$

Bari mu yi amfani da dabarar don jimlar ci gaban geometric и wakilcin ayyuka na trigonometric dangane da hadaddun ƙa'idodi :

$$display$$y=frac{1-exp{i2pi Nfrac{d}{lambda}sinphi}}{1-exp{i2pi frac{d}{lambda}sinphi}}=frac{sin(pi frac{Nd}) {lambda}sinphi)}{sin(pi frac{d}{lambda}sinphi)}exp{ipi frac{d(N-1)}{lambda}sinphi}$$display$$


A sakamakon haka muna samun:

$$display$$F(phi)=|y|^2=frac{sin^2(pi frac{Nd}{lambda}sinphi)}{sin^2(pi frac{d}{lambda}sinphi)} $ nuni $$

Mitar tsarin radiation

Sakamakon eriya tsararrun tsarin radiation aiki ne na lokaci-lokaci na sinin kwana. Wannan yana nufin cewa a wasu dabi'u na rabo d/λ yana da diffraction (ƙarin) maxima.
Adaptive eriya tsararrun: yaya yake aiki? (Basic)Tsarin radiyo mara daidaituwa na tsararrun eriya don N = 5
Adaptive eriya tsararrun: yaya yake aiki? (Basic)Daidaitaccen ƙirar radiyo na tsararrun eriya don N = 5 a cikin tsarin haɗin gwiwar iyakacin duniya

Matsayin "masu gano ɓarna" za a iya duba kai tsaye daga dabaru za DN. Duk da haka, za mu yi ƙoƙari mu fahimci inda suka fito daga jiki da kuma geometrically (a cikin sararin N-dimensional).

Abubuwan mataki vector s su ne hadaddun fursunoni $inline$e^{iPsi n}$inline$, ana ƙididdige ƙimar ƙimar gaba ɗaya $inline$Psi = 2pi frac{d}{lambda}sinphi$inline$. Idan akwai kusurwoyi guda biyu da suka yi daidai da kwatance daban-daban na isowar igiyar jirgin, wanda $inline$Psi_1 = Psi_2 + 2pi m$inline $, to wannan yana nufin abubuwa biyu:

  • A zahiri: Gaban igiyar jirgin sama da ke fitowa daga waɗannan kwatance suna haifar da rabo iri ɗaya na amplitude-lokaci na oscillations na lantarki akan abubuwan tsararrun eriya.
  • Geometrically: ɓangarorin vectors domin wadannan hanyoyi guda biyu sun zo daidai.

Hanyoyi na isowar igiyar ruwa masu alaƙa ta wannan hanya daidai suke daga mahangar tsarin eriya kuma ba za a iya bambanta su da juna ba.

Yadda za a ƙayyade yankin kusurwoyi wanda kawai babban matsakaicin DP koyaushe yana kwance? Bari mu yi wannan a kusa da sifili azimuth daga abubuwan da ke biyowa: girman canjin lokaci tsakanin abubuwa biyu maƙwabta dole ne su kasance cikin kewayon $inline$-pi$inline$ zuwa $inline$pi$inline$.

$$ nuni$$-pi<2pifrac{d}{lambda}sinphi

Magance wannan rashin daidaituwa, mun sami yanayin yankin na musamman a kusa da sifili:

$$ nuni$$|sinphi|

Ana iya ganin cewa girman yankin na musamman a cikin kusurwa ya dogara da dangantaka d/λ. Idan d = 0.5λ, to, kowane shugabanci na siginar zuwa "mutum ɗaya ne", kuma yanki na musamman yana rufe cikakken kusurwar kusurwa. Idan d = 2.0λ, sannan kwatance 0, ±30, ±90 daidai suke. Diffraction lobes suna bayyana akan tsarin radiation.

Yawanci, ana neman murƙushe lobes ta hanyar amfani da abubuwan eriya ta hanya. A wannan yanayin, cikakken tsarin radiyo na tsararrun eriya shine samfurin sifar sinadari ɗaya da tsararrun abubuwan isotropic. Ma'auni na ƙirar nau'i ɗaya yawanci ana zaɓar su ne bisa yanayin yanayin rashin tabbas na tsararrun eriya.

Faɗin babban lobe

Wanda aka sani dabarar injiniya don kimanta faɗin babban lobe na tsarin eriya: $inline$Delta phi ≈ frac{lambda}{D}$inline$, inda D shine siffar girman eriya. Ana amfani da dabarar don nau'ikan eriya iri-iri, gami da na madubi. Bari mu nuna cewa yana da inganci don tsararrun eriya.

Bari mu ƙayyade nisa na babban lobe ta sifilin farko na ƙirar a cikin kusancin babban matsakaicin. Mai ƙididdigewa maganganu na $inline$F(phi)$inline$ ya ɓace lokacin da $inline$sinphi=mfrac{lambda}{dN}$inline$. Sifili na farko sun dace da m = ±1. Imani $inline$frac{lambda}{dN}<<1$inline$ muna samun $inline$Delta phi = 2frac{lambda}{dN}$inline$.

Yawanci, nisa na ƙirar jagorar eriya ana ƙaddara ta matakin rabin ƙarfin (-3 dB). A wannan yanayin, yi amfani da furci:

$$ nuni $$Delta phi≈0.88frac{lambda}{dN}$$ nuni$$

Alal misali:Adaptive eriya tsararrun: yaya yake aiki? (Basic)

Za'a iya sarrafa nisa na babban lobe ta hanyar saita ƙimar girma daban-daban don ƙididdigar ma'aunin nauyi na eriya. Bari mu yi la'akari da rarraba uku:

  • Rarraba girman Uniform (masu nauyi 1): $inline$w_n=1$inline$.
  • Girman darajar suna raguwa zuwa gefuna na grating (masu nauyi 2): $inline$w_n=0.5+0.3cos(2pifrac{n-1}{N}-pifrac{N-1}{N})$inline$
  • Ƙimar girma tana ƙaruwa zuwa gefuna na grating (masu nauyi 3): $inline$w_n=0.5-0.3cos(2pifrac{n-1}{N}-pifrac{N-1}{N})$inline$

Hoton yana nuna sakamakon daidaitaccen tsarin radiyo akan sikelin logarithmic:Adaptive eriya tsararrun: yaya yake aiki? (Basic)
Za'a iya gano abubuwan da ke biyo baya daga adadi: rarraba ma'aunin ma'aunin nauyi da ke raguwa zuwa gefuna na tsararru yana haifar da faɗaɗa babban lobe na ƙirar, amma raguwa a matakin lobes na gefe. Girman ƙimar da ke ƙaruwa zuwa gefuna na tsararrun eriya, akasin haka, suna haifar da raguwar babban lobe da haɓaka matakin lobes na gefe. Ya dace a yi la'akari da iyakance lokuta a nan:

  1. Girman ma'aunin ma'auni na duk abubuwan ban da matsananci suna daidai da sifili. Ma'auni don abubuwan da suka fi tsayi suna daidai da ɗaya. A wannan yanayin, lattice ya zama daidai da nau'i biyu na AR tare da lokaci D = (N-1) d. Ba shi da wahala a kimanta nisa na babban petal ta amfani da dabarar da aka gabatar a sama. A wannan yanayin, bangon gefe zai juya zuwa diffraction maxima kuma ya daidaita tare da babban matsakaicin.
  2. Nauyin kashi na tsakiya yana daidai da ɗaya, kuma duk sauran suna daidai da sifili. A wannan yanayin, da gaske mun karɓi eriya ɗaya tare da ƙirar isotropic radiation.

Hanyar babban matsakaicin

Don haka, mun kalli yadda zaku daidaita faɗin babban lobe na AP AP. Yanzu bari mu ga yadda za a tuƙi hanya. Mu tuna maganan vector don siginar da aka karɓa. Bari mu so iyakar ƙirar radiation ta duba ta wata hanya $inline$phi_0$inline$. Wannan yana nufin cewa ya kamata a karɓi mafi girman iko daga wannan hanya. Wannan jagorar ta yi daidai da matakin $inline$textbf{s}(phi_0)$inline$ in N-girman sararin samaniya, kuma ikon da aka karɓa an ayyana shi azaman murabba'in samfurin scalar na wannan madaidaicin vector da vector na ma'aunin nauyi. w. Samfurin scalar na vector biyu yana da iyaka lokacin da suke collinear, i.e. $inline$textbf{w}=beta textbf{s}(phi_0)$inline$, inda β - wani normalizing factor. Don haka, idan muka zaɓi vector mai nauyi daidai da vector mai jujjuyawa don jagorar da ake buƙata, za mu juya matsakaicin ƙirar radiation.
Adaptive eriya tsararrun: yaya yake aiki? (Basic)
Yi la'akari da abubuwan masu nauyi masu zuwa a matsayin misali: $inline$textbf{w}=textbf{s}(10°)$inline$

$$display$$w_n=exp{i2pifrac{d}{lambda}(n-1)sin(10pi/180)}$$ nuni$$

A sakamakon haka, muna samun samfurin radiation tare da babban matsakaicin matsayi na 10 °.

Yanzu muna amfani da ƙididdiga masu nauyi iri ɗaya, amma ba don karɓar sigina ba, amma don watsawa. Yana da daraja la'akari a nan cewa lokacin da ake watsa sigina, jagorancin raƙuman raƙuman ruwa ya canza zuwa akasin haka. Wannan yana nufin cewa abubuwa matakin vector don liyafar da watsawa sun bambanta a cikin alamar mai magana, watau; an haɗa su ta hanyar hadaddun haɗaɗɗiya. A sakamakon haka, muna samun matsakaicin ƙirar radiation don watsawa a cikin hanyar -10 °, wanda bai dace da matsakaicin tsarin radiation ba don liyafar tare da ma'aunin nauyi iri ɗaya. Don gyara halin da ake ciki, ya zama dole yi amfani da hadaddun haɗakarwa zuwa ma'aunin nauyi kuma.
Adaptive eriya tsararrun: yaya yake aiki? (Basic)
Siffar da aka kwatanta na samar da alamu don liyafar da watsawa yakamata a kiyaye su koyaushe yayin aiki tare da tsararrun eriya.

Bari mu yi wasa da tsarin radiation

Maɗaukaki da yawa

Bari mu saita aikin samar da manyan maxima guda biyu na tsarin radiation a cikin shugabanci: -5 ° da 10 °. Don yin wannan, za mu zaɓi a matsayin vector nauyi adadin ma'auni mai ma'auni na ɓangarorin ma'auni don kwatance masu dacewa.

$$display$$textbf{w} = betatextbf{s}(10°)+(1-beta)textbf{s}(-5°)$$ nuni$$

Adaptive eriya tsararrun: yaya yake aiki? (Basic)Ta hanyar daidaita rabo β Kuna iya daidaita rabo tsakanin manyan petals. Anan kuma yana da dacewa don duba abin da ke faruwa a sararin samaniya. Idan β ya fi 0.5, to, vector na ma'aunin ƙididdiga yana kusa da s(10°), in ba haka ba s(-5°). Matsakaicin ma'aunin nauyi yana zuwa ɗaya daga cikin phasors, mafi girman samfurin scalar, sabili da haka ƙimar madaidaicin matsakaicin DP.
Adaptive eriya tsararrun: yaya yake aiki? (Basic)
Duk da haka, yana da daraja la'akari da cewa duka manyan petals suna da iyakacin nisa, kuma idan muna so mu daidaita zuwa wurare biyu na kusa, to waɗannan petals za su haɗu zuwa ɗaya, suna mai da hankali ga wasu tsakiya.

Madaidaicin ɗaya da sifili

Yanzu bari muyi kokarin daidaita matsakaicin ƙirar radiation zuwa shugabanci $inline$phi_1=10°$inline$ kuma a lokaci guda mu murkushe siginar da ke fitowa daga hanyar $inline$phi_2=-5°$inline$. Don yin wannan, kuna buƙatar saita sifilin DN don kusurwar da ta dace. Kuna iya yin haka kamar haka:

$$ nuni$$textbf{w}=textbf{s}_1-frac{textbf{s}_2^Htextbf{s}_1}{N}textbf{s}_2$$ nuni $$

inda $inline$textbf{s}_1 = textbf{s}(10°)$inline$, da $inline$textbf{s}_2 = textbf{s}(-5°)$inline$.
Adaptive eriya tsararrun: yaya yake aiki? (Basic)
Ma'anar geometric na zabar vector mai nauyi shine kamar haka. Muna son wannan vector w yana da matsakaicin tsinkaya akan $inline$textbf{s}_1$inline$ kuma a lokaci guda ya kasance daidai ga vector $inline$textbf{s}_2$inline$. Za a iya wakilta vector $inline$textbf{s}_1$inline$ a matsayin sharuɗɗa biyu: collinear vector $inline$textbf{s}_2$inline$ da kuma vector $inline$textbf{s}_2$inline$. Don gamsar da bayanin matsalar, ya zama dole a zaɓi sashi na biyu azaman vector na ma'aunin nauyi w. Za'a iya ƙididdige ɓangaren collinear ta hanyar ƙaddamar da vector $inline$textbf{s}_1$inline$ akan daidaitaccen vector $inline$frac{textbf{s}_2}{sqrt{N}}$inline$ ta amfani da samfurin scalar.

$$display$$textbf{s}_{1||}=frac{textbf{s}_2}{sqrt{N}}frac{textbf{s}_2^Htextbf{s}_1}{sqrt{N}} $$ nunawa$$

Dangane da haka, cire kayan aikin sa na collinear daga ainihin madaidaicin vector $inline$textbf{s}_1$inline$, muna samun ma'aunin nauyi da ake so.
Adaptive eriya tsararrun: yaya yake aiki? (Basic)

Wasu ƙarin bayanin kula

  1. A ko'ina a sama, na bar batun daidaita ma'aunin nauyi, watau. tsayinsa. Don haka, daidaita ma'aunin nauyi ba ya shafar halayen eriya tsararrun tsarin radiation: shugabanci na babban matsakaicin, nisa na babban lobe, da sauransu. Hakanan za'a iya nuna cewa wannan al'ada ba ta shafar SNR a fitowar sashin sarrafa sararin samaniya. Dangane da wannan, lokacin yin la'akari da algorithms sarrafa siginar sararin samaniya, yawanci muna yarda da daidaitawar ra'ayi na vector nauyi, watau. $inline$textbf{w}^Htextbf{w}=1$inline$
  2. Yiwuwar samar da tsarin tsararrun eriya ana ƙididdige su ta adadin abubuwan N. Yawancin abubuwa, mafi girman yuwuwar. Ƙarin digiri na 'yanci lokacin aiwatar da sarrafa nauyin sararin samaniya, ƙarin zaɓuɓɓuka don yadda za a "karkatar" nauyin nauyin nauyi a cikin sararin N-dimensional.
  3. Lokacin karɓar tsarin radiation, tsararrun eriya ba ta wanzu a zahiri, kuma duk wannan yana wanzuwa ne kawai a cikin “tunanin” naúrar kwamfuta mai sarrafa siginar. Wannan yana nufin cewa a lokaci guda yana yiwuwa a haɗa nau'o'i da yawa da sarrafa siginoni masu zuwa daga wurare daban-daban. Game da watsawa, komai ya ɗan fi rikitarwa, amma kuma yana yiwuwa a haɗa DN da yawa don watsa magudanan bayanai daban-daban. Ana kiran wannan fasaha a tsarin sadarwa MIMO.
  4. Yin amfani da lambar matlab ɗin da aka gabatar, zaku iya wasa tare da DN da kanku
    Lambar

    % antenna array settings
    N = 10;             % number of elements
    d = 0.5;            % period of antenna array
    wLength = 1;        % wavelength
    mode = 'receiver';  % receiver or transmitter
    
    % weights of antenna array
    w = ones(N,1);    
    % w = 0.5 + 0.3*cos(2*pi*((0:N-1)-0.5*(N-1))/N).';
    % w = 0.5 - 0.3*cos(2*pi*((0:N-1)-0.5*(N-1))/N).';
    % w = exp(2i*pi*d/wLength*sin(10/180*pi)*(0:N-1)).';
    % b = 0.5; w = b*exp(2i*pi*d/wLength*sin(+10/180*pi)*(0:N-1)).' + (1-b)*exp(2i*pi*d/wLength*sin(-5/180*pi)*(0:N-1)).';
    % b = 0.5; w = b*exp(2i*pi*d/wLength*sin(+3/180*pi)*(0:N-1)).' + (1-b)*exp(2i*pi*d/wLength*sin(-3/180*pi)*(0:N-1)).';
    
    % s1 = exp(2i*pi*d/wLength*sin(10/180*pi)*(0:N-1)).';
    % s2 = exp(2i*pi*d/wLength*sin(-5/180*pi)*(0:N-1)).';
    % w = s1 - (1/N)*s2*s2'*s1;
    % w = s1;
    
    % normalize weights
    w = w./sqrt(sum(abs(w).^2));
    
    % set of angle values to calculate pattern
    angGrid_deg = (-90:0.5:90);
    
    % convert degree to radian
    angGrid = angGrid_deg * pi / 180;
    % calculate set of steerage vectors for angle grid
    switch (mode)
        case 'receiver'
            s = exp(2i*pi*d/wLength*bsxfun(@times,(0:N-1)',sin(angGrid)));
        case 'transmitter'
            s = exp(-2i*pi*d/wLength*bsxfun(@times,(0:N-1)',sin(angGrid)));
    end
    
    % calculate pattern
    y = (abs(w'*s)).^2;
    
    %linear scale
    plot(angGrid_deg,y/max(y));
    grid on;
    xlim([-90 90]);
    
    % log scale
    % plot(angGrid_deg,10*log10(y/max(y)));
    % grid on;
    % xlim([-90 90]);

Wadanne matsaloli ne za a iya magance ta amfani da tsararrun eriya mai daidaitawa?

Mafi kyawun liyafar siginar da ba a sani baIdan jagorar zuwan siginar ba a sani ba (kuma idan tashar sadarwa tana da yawa, akwai kwatance da yawa gabaɗaya), to, ta hanyar nazarin siginar da aka karɓa ta hanyar eriya, yana yiwuwa a samar da vector mafi kyaun nauyi. w ta yadda SNR a fitowar naúrar sarrafa sararin samaniya zai zama mafi girma.

Mafi kyawun liyafar sigina akan hayaniyar bangoAnan an gabatar da matsalar kamar haka: an san ma'auni na sararin samaniya na siginar da ake sa ran, amma akwai tushen tsoma baki a cikin yanayin waje. Wajibi ne don ƙara girman SINR a fitowar AP, rage tasirin kutse akan liyafar sigina gwargwadon yiwuwa.

Mafi kyawun watsa sigina ga mai amfaniAna magance wannan matsalar a tsarin sadarwar wayar hannu (4G, 5G), da kuma a cikin Wi-Fi. Ma'anar ita ce mai sauƙi: tare da taimakon siginar matukin jirgi na musamman a cikin tashar amsawar mai amfani, ana kimanta halayen sararin samaniya na tashar sadarwa, kuma a kan tushensa, an zaɓi vector na ma'aunin nauyi wanda ya fi dacewa don watsawa.

Yawaita sarari na rafukan bayanaiTsarin eriya masu daidaitawa suna ba da damar watsa bayanai ga masu amfani da yawa a lokaci guda akan mitoci iri ɗaya, suna samar da tsari ɗaya ga kowane ɗayansu. Ana kiran wannan fasaha MU-MIMO kuma a halin yanzu ana aiwatar da shi sosai (kuma a wani wuri) a cikin tsarin sadarwa. An bayar da yuwuwar musayar sararin samaniya, misali, a cikin ma'aunin sadarwar wayar hannu ta 4G LTE, mizanin IEEE802.11ay Wi-Fi, da ma'aunin sadarwar wayar hannu 5G.

Shirye-shiryen eriya na zahiri don radarsTsarin eriya na dijital yana ba da damar, ta amfani da abubuwan eriya masu watsawa da yawa, don samar da tsararrun eriya mai girma da girma don sarrafa sigina. Grid mai kama-da-wane yana da duk halayen gaske, amma yana buƙatar ƙarancin kayan aiki don aiwatarwa.

Ƙididdiga na sigogi na tushen radiationMatsalolin eriya masu daidaitawa suna ba da damar warware matsalar ƙididdige lamba, iko, daidaitawar angular tushen watsawar rediyo, kafa haɗin ƙididdiga tsakanin sigina daga tushe daban-daban. Babban fa'idar tsararrun eriya masu daidaitawa a cikin wannan al'amari shine ikon ƙwaƙƙwaran warware tushen radiation kusa. Tushen, nisan kusurwa tsakanin wanda bai kai faɗin babban lobe na ƙirar ƙirar eriya ba (Rayleigh ƙuduri iyaka). Wannan yana yiwuwa ne saboda wakilcin vector na siginar, sanannen siginar siginar, da kuma na'urorin lissafi na layi.

Godiya ga kulawa

source: www.habr.com

Add a comment