Labarin transistor: latsa hanyar ku cikin duhu

Labarin transistor: latsa hanyar ku cikin duhu

Sauran labarai a cikin jerin:

Hanyar zuwa maɓalli mai ƙarfi-jihar ta daɗe da wahala. Ya fara ne da gano cewa wasu kayan aiki suna da ban mamaki a gaban wutar lantarki - ba kamar yadda ka'idodin da suka gabata suka yi hasashe ba. Abin da ya biyo baya shi ne labarin yadda fasaha ta zama ci gaban kimiyya da ci gaba a cikin karni na 20. Masu son zama, novice da ƙwararrun masu ƙirƙira waɗanda kusan ba su da ilimin kimiyya sun ba da gudummawa mai mahimmanci ga haɓaka telegraph, tarho da rediyo. Amma, kamar yadda za mu gani, kusan dukkanin ci gaban da aka samu a cikin tarihin ingantaccen tsarin lantarki sun fito ne daga masana kimiyya waɗanda suka yi karatu a jami'o'i (kuma yawanci suna da digiri na uku a fannin kimiyyar lissafi) kuma sun yi aiki a jami'o'i ko dakunan bincike na kamfanoni.

Duk wanda ke da damar zuwa wurin bita da ƙwarewar kayan masarufi zai iya haɗa relay daga wayoyi, ƙarfe da itace. Ƙirƙirar bututun ruwa yana buƙatar ƙarin kayan aiki na musamman waɗanda zasu iya ƙirƙirar kwan fitila da fitar da iska daga ciki. Na'urori masu ƙarfi da ƙarfi sun ɓace a cikin rami na zomo wanda canjin dijital bai taɓa dawowa ba, yana zurfafa zurfafa cikin duniyoyin da ba za a iya fahimta kawai don ilimin lissafi ba kuma ana iya samun su kawai tare da taimakon kayan aiki masu tsada.

Galena

A 1874 shekara Ferdinand Brown, masanin kimiyyar lissafi dan shekara 24 daga St. Thomas a Leipzig, ya wallafa na farko daga cikin muhimman ayyukan kimiyya a cikin dogon aikinsa. Takardar, "A kan Wutar Lantarki na Currents ta hanyar Metal Sulfides," an yarda da ita a cikin Pogendorff's Annalen, wata babbar jarida mai mahimmanci da aka sadaukar da ita ga ilimin kimiyyar jiki. Duk da take mai ban gajiyawa, takardar Brown ta bayyana wasu sakamako masu ban mamaki da ban mamaki na gwaji.

Labarin transistor: latsa hanyar ku cikin duhu
Ferdinand Brown

Brown ya zama abin sha'awar sulfides - lu'ulu'u na ma'adinai da suka hada da mahadi na sulfur tare da karafa - ta hanyar aikinsa. Johann Wilhelm Hittorf. A farkon shekara ta 1833, Michael Faraday ya lura cewa tafiyar da aikin sulfide na azurfa yana ƙaruwa da zafin jiki, wanda shine ainihin akasin halayen masu jagoranci na karfe. Hittorf ya tattara cikakken rahoton ma'auni na wannan tasirin a cikin 1850s, na azurfa da sulfide na jan karfe. Yanzu Brown, ta yin amfani da saitin gwaji mai wayo wanda ya danna waya ta ƙarfe a kan kristal sulfide tare da marmaro don tabbatar da kyakkyawar hulɗa, ya gano wani abu ko da baƙo. Ƙarfafawar lu'ulu'u ya dogara da shugabanci - alal misali, halin yanzu na iya gudana da kyau a hanya ɗaya, amma lokacin da polarity na baturi ya juya, halin yanzu na iya raguwa da sauri. Lu'ulu'u sun yi kama da madugu a hanya ɗaya (kamar ƙarfe na yau da kullun) kuma mafi kama da insulators a wani (kamar gilashi ko roba). Wannan kadarar ta zama sananne da gyarawa saboda ikonta na daidaita “crimped” alternating current zuwa “lebur” kai tsaye halin yanzu.

A lokaci guda, masu bincike sun gano wasu abubuwan ban mamaki na kayan kamar selenium, wanda za'a iya narkar da su daga wasu nau'o'in karfe sulfide. Lokacin da aka fallasa shi da haske, selenium ya ƙara ƙarfin aiki har ma ya fara samar da wutar lantarki, kuma ana iya amfani dashi don gyarawa. Shin akwai wata alaƙa da lu'ulu'u na sulfide? Ba tare da ƙirar ƙididdiga don bayyana abin da ke faruwa ba, filin yana cikin rudani.

Koyaya, rashin ka'idar bai dakatar da ƙoƙarin aiwatar da sakamakon a zahiri ba. A ƙarshen 1890s, Brown ya zama farfesa a Jami'ar Strasbourg - kwanan nan an haɗa shi daga Faransa a lokacin Yaƙin Franco-Prussian kuma an sake masa suna Kaiser Wilhelm University. A can aka tsotse shi cikin sabuwar duniya mai ban sha'awa ta rediyo. Ya amince da wata shawara daga kungiyar ’yan kasuwa don samar da tsarin sadarwa mara waya ta hadin gwiwa dangane da isar da igiyoyin rediyo ta ruwa. Duk da haka, ba da daɗewa ba shi da abokansa suka yi watsi da ainihin ra'ayin don neman siginar iska, wanda Marconi da sauransu suka yi amfani da shi.

Daga cikin abubuwan da suka shafi rediyon da ƙungiyar Brown ta nemi ingantawa har da ma'auni mai karɓa na lokacin, mai haɗa kai. Ya dogara ne akan gaskiyar cewa igiyoyin rediyo sun haifar da bayanan ƙarfe don yin cuɗanya tare, yana barin halin yanzu daga baturi ya wuce zuwa na'urar sigina. Ya yi aiki, amma tsarin yana amsa sigina masu ƙarfi ne kawai, kuma yana buƙatar bugun na'urar akai-akai don karya dunƙule na sawdust. Brown ya tuna da tsoffin gwaje-gwajen da ya yi tare da lu'ulu'u na sulfide, kuma a cikin 1899 ya sake ƙirƙirar tsohuwar saitin gwajinsa tare da sabuwar manufa - don zama mai gano siginar mara waya. Ya yi amfani da tasirin gyare-gyaren don canza ƙaramar motsin halin yanzu da ake samarwa ta hanyar wucewar raƙuman radiyo zuwa madaurin kai tsaye wanda zai iya kunna ƙaramin lasifika wanda ya samar da latsa mai ji ga kowane digo ko dash. Daga baya wannan na'urar ta zama sunan "cat whisker detector"saboda fitowar wayar, wanda cikin sauki ya taba saman kristal. A Birtaniya Indiya (inda Bangladesh ke a yau), masanin kimiyya kuma mai kirkiro Jagadish Bose ya gina irin wannan na'ura, watakila a farkon 1894. Wasu ba da daɗewa ba suka fara yin irin waɗannan na'urori masu ganowa bisa silicon da carborundum (silicon carbide).

Duk da haka, shi ne galena, Sulfide na gubar, wanda aka narke don samar da gubar tun zamanin da, ya zama kayan da aka zaba don masu gano crystal. Sun kasance masu sauƙin yi da arha, kuma a sakamakon haka sun zama sananne a cikin farkon ƙarni na masu son rediyo. Bugu da ƙari, ba kamar mai haɗin binary (tare da sawdust wanda ko dai ya taru ko a'a), mai gyara crystalline zai iya haifar da sigina mai ci gaba. Saboda haka, zai iya samar da murya da kiɗan da za a ji a kunne, kuma ba kawai lambar Morse tare da dige-dige da dashes ba.

Labarin transistor: latsa hanyar ku cikin duhu
Mai gano whisker na Cat bisa galena. Karamin guntun waya a gefen hagu shine whisker, kuma guntun kayan azurfa a kasa shine crystal galena.

Koyaya, kamar yadda masu son rediyon takaici suka gano ba da daɗewa ba, yana iya ɗaukar mintuna ko ma sa'o'i don nemo wurin sihiri a saman kristal wanda zai ba da gyara mai kyau. Kuma sigina ba tare da haɓakawa ba sun raunana kuma suna da sautin ƙarfe. A cikin 1920s, masu karɓar bututu tare da amplifiers triode sun kusan sa na'urorin gano crystal sun daina aiki kusan ko'ina. Abinda kawai suke da shi shine arha.

Wannan ɗan taƙaitaccen bayyanar a fagen rediyo ya zama kamar ƙayyadaddun aikace-aikace na baƙon kayan lantarki na kayan da Brown da sauransu suka gano.

Copper oxide

Sannan a cikin 1920s, wani masanin kimiyyar lissafi mai suna Lars Grondahl ya gano wani bakon abu tare da saitin gwajinsa. Grondahl, na farkon jerin mazaje masu wayo da natsuwa a tarihin Yammacin Amurka, ɗan injiniyan farar hula ne. Mahaifinsa, wanda ya yi hijira daga Norway a shekara ta 1880, ya yi aiki na tsawon shekaru da yawa a kan layin dogo a California, Oregon da Washington. Da farko, Grondahl ya ƙudura niyyar barin duniyar injiniyan mahaifinsa a baya, zuwa Johns Hopkins don samun digiri na uku a fannin kimiyyar lissafi don bin hanyar ilimi. Amma sai ya shiga cikin kasuwancin layin dogo kuma ya zama darektan bincike a Union Switch and Signal, wani bangare na katafaren masana'antu. Gidan Yamma, wanda ya ba da kayan aiki don masana'antar layin dogo.

Majiyoyi dabam-dabam na nuni da dalilai masu karo da juna na kwarin gwiwar Grondahl na bincikensa, amma duk da haka, ya fara gwaji da fayafai na tagulla da aka dumama a gefe guda don ƙirƙirar faifan oxidized. Yayin da yake aiki tare da su, ya lura da asymmetry na halin yanzu - juriya a daya hanya ya ninka sau uku fiye da sauran. Fannin jan karfe da jan karfe oxide sun gyara halin yanzu, kamar sulfide crystal.

Labarin transistor: latsa hanyar ku cikin duhu
Copper Oxide Rectifier Circuit

Grondahl ya shafe shekaru shida masu zuwa yana samar da na'urar gyara na'urar da za a yi amfani da ita bisa wannan al'amari, inda ya nemi taimakon wani mai bincike na Amurka, Paul Geiger, kafin ya mika takardar shaidar mallaka tare da sanar da bincikensa ga kungiyar lafiyar jiki ta Amurka a 1926. Na'urar. nan da nan ya zama abin kasuwanci. Saboda rashin filaye masu rauni, ya fi dogaro da yawa fiye da na'urar gyara bututun da aka kafa bisa ka'idar bawul ɗin Fleming, kuma yana da arha don kera. Ba kamar lu'ulu'u masu gyaran fuska na Brown ba, ya yi aiki a farkon gwaji, kuma saboda girman wurin hulɗa tsakanin ƙarfe da oxide, ya yi aiki tare da mafi girman kewayon igiyoyi da ƙarfin lantarki. Zai iya cajin batura, gano sigina a tsarin lantarki daban-daban, kuma yana aiki azaman shunt mai tsaro a cikin janareta masu ƙarfi. Lokacin da aka yi amfani da su azaman photocell, fayafai na iya aiki azaman mitoci masu haske, kuma suna da amfani musamman wajen ɗaukar hoto. Sauran masu bincike a kusa da lokaci guda sun samar da masu gyara selenium waɗanda suka samo irin wannan aikace-aikacen.

Labarin transistor: latsa hanyar ku cikin duhu
Fakitin masu gyara bisa tushen jan karfe oxide. Haɗin faifai da yawa ya haɓaka juriya na baya, wanda ya ba da damar yin amfani da su tare da babban ƙarfin lantarki.

Bayan 'yan shekaru, wasu masana kimiyyar lissafi na Bell Labs, Joseph Becker da Walter Brattain, sun yanke shawarar yin nazarin ka'idar aiki na mai gyara jan karfe - suna da sha'awar koyon yadda yake aiki da kuma yadda za a iya amfani da shi a Tsarin Bell.

Labarin transistor: latsa hanyar ku cikin duhu
Brattain a cikin tsufa - kimanin. 1950

Brattain ya fito ne daga yanki ɗaya da Grondal, a cikin Pacific Northwest, inda ya girma a gonaki mai nisan kilomita kaɗan daga kan iyakar Kanada. A makarantar sakandare, ya zama mai sha’awar ilimin kimiyyar lissafi, inda ya nuna kwazo a fannin, kuma daga karshe ya sami digirin digirgir daga Jami’ar Minnesota a karshen shekarun 1920, ya kuma yi aiki a Bell Laboratories a shekarar 1929. Daga cikin wadansu abubuwa, a jami’ar da ya yi karatu. latest theoretical Physics , wanda ke samun karbuwa a Turai, kuma aka sani da makanikan ƙididdiga (mai kula da shi shine John Hasbrouck Van Vleck, wanda kuma ya jagoranci John Atanasoff).

juyi juyi

Wani sabon dandali na ka'ida ya ci gaba sannu a hankali cikin shekaru talatin da suka gabata, kuma a cikin lokaci mai tsawo zai iya bayyana dukkan abubuwan ban mamaki da aka lura shekaru da yawa a cikin kayan kamar galena, selenium da jan karfe oxide. Gamayyar ƙungiyar galibin matasa masana kimiyyar lissafi, galibi daga Jamus da ƙasashe maƙwabta, sun haifar da juyi juyi a fannin kimiyyar lissafi. Duk inda suka duba, ba su sami duniyar santsi da ci gaba da aka koya musu ba, sai dai baƙon dunƙulewa.

An fara duka a cikin 1890s. Max Planck, sanannen farfesa a Jami'ar Berlin, ya yanke shawarar yin aiki tare da sanannen matsalar da ba a warware ta ba: ta yaya "gaba daya baki jiki"(wani abu mai kyau wanda yake ɗaukar dukkan makamashi kuma baya nuna shi) yana fitar da radiation a cikin bakan na'urar lantarki? An gwada samfura iri-iri, babu ɗayansu wanda ya yi daidai da sakamakon gwaji - sun gaza a ko dai ƙarshen bakan ko ɗayan. Planck ya gano cewa idan muka ɗauka cewa jiki yana fitar da makamashi a cikin ƙananan "fakiti" na ƙididdiga masu yawa, to, za mu iya rubuta wata doka mai sauƙi na dangantaka tsakanin mita da makamashi, wanda ya dace daidai da sakamakon da aka samu.

Ba da da ewa ba, Einstein ya gano cewa abu ɗaya ya faru tare da ɗaukar haske (alamar farko ta photons), kuma J. J. Thomson ya nuna cewa wutar lantarki kuma ba ta ci gaba da ruwa ko igiyar ruwa ba, amma ta hanyar kwayoyin halitta - electrons. Daga nan Niels Bohr ya kirkiro wani samfurin da zai bayyana yadda zarra masu zumudi ke fitar da radiation ta hanyar sanya electrons zuwa kowane yanayi a cikin kwayar zarra, kowanne da makamashinsa. Duk da haka, wannan suna yana da ɓarna saboda ba sa yin hali kwata-kwata kamar kewayawar taurari - a tsarin Bohr, electrons nan take tsalle daga wannan orbit, ko matakin makamashi, zuwa wani, ba tare da wucewa ta tsaka-tsakin yanayi ba. A ƙarshe, a cikin 1920s, Erwin Schrödinger, Werner Heisenberg, Max Born da sauransu sun ƙirƙiri wani dandamali na lissafi na gaba ɗaya wanda aka sani da injin ƙira, wanda ya haɗa duk nau'ikan ƙira na musamman waɗanda aka ƙirƙira sama da shekaru ashirin da suka gabata.

A wannan lokacin, masana kimiyya sun riga sun amince cewa kayan irin su selenium da galena, wanda ke nuna kayan aikin hoto da gyaran gyare-gyare, sun kasance a cikin nau'i na kayan aiki daban-daban, wanda ake kira semiconductor. Rarraba ya ɗauki tsawon lokaci don dalilai da yawa. Da fari dai, rukunonin “conductors” da “insulators” su kansu sun yi faɗi sosai. T.N. “Masu jagoranci” sun bambanta sosai a cikin ɗabi’a, kuma iri ɗaya (har zuwa ƙanƙanta) gaskiya ne na insulators, kuma ba a bayyana yadda za a iya rarraba kowane madugu cikin ɗayan waɗannan azuzuwan ba. Haka kuma, har zuwa tsakiyar karni na 20 ba zai yuwu a samu ko haifar da abubuwa masu tsafta ba, kuma duk wani abin da bai dace ba a cikin tafiyar da kayan halitta ana iya danganta shi da gurbacewa.

Masana kimiyya yanzu suna da kayan aikin lissafi na injiniyoyin ƙididdiga da sabon nau'in kayan da za a iya amfani da su. Masanin ilimin Burtaniya Alan Wilson shi ne farkon wanda ya haɗa shi duka tare da gina babban samfurin semiconductor da yadda suke aiki a cikin 1931.

Da farko, Wilson ya bayar da hujjar cewa kayan aiki sun bambanta da na'urorin lantarki a yanayin makadan makamashin su. Makanikai na Quantum sun bayyana cewa electrons na iya wanzuwa a cikin ƙayyadaddun matakan makamashi da ake samu a cikin harsashi, ko orbitals, na ƙwayoyin zarra guda ɗaya. Idan kun matse waɗannan atom ɗin tare a cikin tsarin abu, zai fi dacewa ku yi tunanin ci gaba da yankunan makamashi suna wucewa ta cikinsa. Akwai sarari a cikin madugu a cikin manyan makada masu ƙarfi, kuma filin lantarki na iya motsa electrons a wurin kyauta. A cikin insulators, an cika shiyyoyin, kuma yana da tsayi mai tsayi don isa mafi girma, yankin gudanarwa, ta inda wutar lantarki ta fi sauƙi don tafiya.

Wannan ya kai shi ga ƙarshe cewa ƙazanta - atom ɗin ƙasashen waje a cikin tsarin kayan - dole ne su ba da gudummawa ga kaddarorin sa. Za su iya samar da ƙarin electrons, waɗanda ke tserewa cikin sauƙi a cikin bandeji, ko ramuka-rashin electrons dangane da sauran kayan-wanda ke haifar da wuraren makamashi mara amfani inda electrons kyauta zasu iya motsawa. Zabi na farko daga baya aka kira n-type (ko na lantarki) semiconductor saboda yawan cajin mara kyau, kuma na biyu - nau'in p-type ko rami semiconductor saboda wuce haddi tabbataccen cajin.

A ƙarshe, Wilson ya ba da shawarar cewa gyara na yanzu ta hanyar semiconductor za a iya bayyana shi cikin sharuddan ƙididdigewa. tasirin rami, tsalle-tsalle na electrons a kan shingen lantarki na bakin ciki a cikin wani abu. Ka'idar ta yi kama da mai kyau, amma ta annabta cewa a cikin mai gyara halin yanzu ya kamata ya gudana daga oxide zuwa jan karfe, kodayake a gaskiya shi ne akasin haka.

Don haka, duk da duk nasarorin da Wilson ya samu, semiconductor ya kasance da wahala a bayyana. Kamar yadda a hankali ya bayyana a sarari, canje-canje na ƙananan ƙwararru a cikin tsarin kristal da tattara ƙazanta ba su dace ba sun shafi halayen lantarki na macroscopic. Yin watsi da rashin fahimta - tun da babu wanda zai iya yin bayani game da gwaje-gwajen gwaji da Brown ya yi shekaru 60 da suka gabata - Brattain da Becker sun ɓullo da ingantaccen tsarin masana'antu don gyaran ƙarfe-oxide ga ma'aikacin su. The Bell System da sauri ya fara maye gurbin vacuum tube rectifiers a ko'ina cikin tsarin da sabuwar na'ura da injiniyoyinsu suka kira. varistor, tun da juriya ya bambanta dangane da alkibla.

lambar zinare

Mervyn Kelly, masanin kimiyyar lissafi kuma tsohon shugaban sashen bututun iska na Bell Labs, ya kasance mai sha'awar wannan ci gaban. A cikin 'yan shekarun da suka gabata, bututun injin ya ba Bell sabis mai mahimmanci, kuma sun sami damar yin ayyukan da ba su yiwuwa tare da ƙarni na baya na injiniyoyi da na'urorin lantarki. Amma sun yi zafi, suna yin zafi akai-akai, suna cinye makamashi mai yawa, kuma suna da wuyar kulawa. Kelly yayi niyyar sake gina tsarin Bell tare da ingantaccen abin dogaro da dorewar kayan lantarki na jihar, kamar varistors, waɗanda baya buƙatar hatimi, mai cike da iskar gas ko fanko ko filaye masu zafi. A 1936, ya zama shugaban sashen bincike na Bell Labs, kuma ya fara tura kungiyar zuwa wata sabuwar hanya.

Bayan samun ingantaccen mai gyara-jihar, mataki na gaba a bayyane shine ƙirƙirar amplifier mai ƙarfi. A zahiri, kamar amplifier bututu, irin wannan na'urar kuma na iya aiki azaman canjin dijital. Wannan yana da sha'awa ta musamman ga kamfanin Bell, tunda har yanzu wayoyin tarho suna amfani da ɗimbin na'urorin lantarki na lantarki. Kamfanin yana neman mafi aminci, ƙarami, ingantaccen makamashi da sanyaya maye gurbin bututun injin a cikin tsarin tarho, rediyo, radars da sauran kayan aikin analog, inda aka yi amfani da su don haɓaka sigina marasa ƙarfi zuwa matakan da kunnen ɗan adam ke iya ji.

A cikin 1936, dakunan gwaje-gwaje na Bell a ƙarshe sun ɗaga daskararren hayar da aka sanya lokacin Babban Damuwa. Nan da nan Kelly ya fara ɗaukar ƙwararrun injiniyoyi na ƙididdigewa don taimakawa ƙaddamar da ingantaccen tsarin bincikensa, gami da William Shockley, wani ɗan asalin Kogin Yamma, daga Palo Alto, California. Batun littafinsa na kwanan nan na MIT ya dace da bukatun Kelly: "Maɗaɗɗan Electron a Sodium Chloride."

Brattain da Becker sun ci gaba da bincikensu kan gyaran gyare-gyaren jan karfe oxide a wannan lokacin, suna neman ingantacciyar ƙararrawa mai ƙarfi. Hanyar da ta fi dacewa don yin ta ita ce bin kwatance tare da bututu. Kamar dai yadda Lee de Forest ya ɗauki tube amp da sanya grid na lantarki tsakanin cathode da anode, kuma Brattain da Becker sun yi tunanin yadda za a iya saka raga a mahadar jan karfe da jan karfe oxide, inda ya kamata a yi gyara. Duk da haka, saboda ƙananan kauri na Layer, sun ga ba zai yiwu a yi haka ba, kuma ba su yi nasara a wannan ba.

A halin yanzu, wasu ci gaba sun nuna cewa Bell Labs ba shine kawai kamfani da ke sha'awar kayan lantarki mai ƙarfi ba. A cikin 1938, Rudolf Hilsch da Robert Pohl sun buga sakamakon gwaje-gwajen da aka yi a Jami'ar Göttingen a kan na'ura mai ƙarfi mai ƙarfi wanda aka ƙirƙira ta hanyar gabatar da grid a cikin crystal bromide na potassium. Wannan na'urar dakin gwaje-gwaje ba ta da wani amfani mai amfani, musamman saboda tana aiki da mitar da bai wuce 1 Hz ba. Kuma duk da haka, wannan nasarar ba za ta iya farantawa kowa da kowa sha'awar kayan lantarki mai ƙarfi ba. A wannan shekarar, Kelly ya sanya Shockley zuwa sabon rukunin bincike na na'ura mai zaman kansa kuma ya ba shi da abokan aikinsa Foster Nix da Dean Woolridge carte blanche don bincika iyawarsu.

Aƙalla wasu masu ƙirƙira guda biyu sun sami nasarar ƙirƙirar ƙaƙƙarfan amplifiers kafin yakin duniya na biyu. A 1922, Soviet masanin kimiyyar lissafi da mai ƙirƙira Oleg Vladimirovich Losev ya buga sakamakon gwaje-gwajen da suka yi nasara tare da na'urori masu kwakwalwa na zincite, amma aikin nasa bai lura da al'ummar Yamma ba; A shekara ta 1926, mai ƙirƙira Ba’amurke Julius Lillenfield ya nemi takardar haƙƙin mallaka don ƙara ƙarfi mai ƙarfi, amma babu wata shaida da ke nuna cewa ƙirƙirarsa ta yi aiki.

Babban hangen nesa na farko na Shockley a cikin sabon matsayinsa ya faru ne yayin da yake karanta aikin physicist dan Burtaniya Neville Moth's 1938, Theory of Crystalline Rectifiers, wanda a karshe ya bayyana ka'idar aiki na Grondahl jan karfe oxide rectifier. Mott ya yi amfani da ilimin lissafi na injiniyoyin ƙididdiga don bayyana samuwar wutar lantarki a mahadar sarrafa ƙarfe da na'ura mai ɗaukar hoto, da kuma yadda electrons ke "tsalle" akan wannan shingen lantarki, maimakon tunnel kamar yadda Wilson ya tsara. Yanzu yana gudana cikin sauƙi daga ƙarfe zuwa semiconductor fiye da akasin haka saboda ƙarfen yana da ƙarin electrons kyauta masu yawa.

Wannan ya haifar da Shockley zuwa ainihin ra'ayin da Brattain da Becker suka yi la'akari kuma suka ƙi shekaru da suka wuce - yin ƙararrawa mai ƙarfi ta hanyar shigar da ragamar jan ƙarfe tsakanin jan ƙarfe da jan karfe oxide. Ya yi fatan cewa halin yanzu da ke gudana ta hanyar grid zai ƙara shingen da ke iyakance kwararar halin yanzu daga jan ƙarfe zuwa oxide, ƙirƙirar jujjuyawar siginar siginar a kan grid. Ƙoƙarin ɗanyen sa na farko ya ci tura gaba ɗaya, don haka ya juya ga wani mutum mai ingantaccen ƙwarewar dakin gwaje-gwaje da masaniyar masu gyara: Walter Brattain. Kuma, ko da yake ba shi da shakku game da sakamakon, Brattain ya yarda ya gamsar da sha'awar Shockley, kuma ya ƙirƙiri ƙarin sigar ƙarar "grid". Ita ma ta ki yin aiki.

Sai yaki ya shiga tsakani, ya bar sabon shirin bincike na Kelly cikin rudani. Kelly ya zama shugaban rukunin aiki na radar a Bell Labs, wanda babbar cibiyar bincike ta radar Amurka ke tallafawa a MIT. Brattain ya yi masa aiki a taƙaice, sannan ya ci gaba da bincike kan gano ma'aunin maganadisu na jiragen ruwa na ruwa. Woolridge yayi aiki akan tsarin sarrafa wuta, Nix yayi aiki akan watsa iskar gas don aikin Manhattan, kuma Shockley ya shiga cikin bincike na aiki, ya fara aiki akan yaƙin da ke ƙarƙashin ruwa a cikin Tekun Atlantika sannan kuma akan dabarun bama-bamai a cikin Pacific.

Amma duk da wannan shiga tsakani, yakin bai hana samar da ingantattun na'urorin lantarki ba. Akasin haka, ya shirya dumbin albarkatu a cikin fage, kuma ya kai ga tattara bincike kan abubuwa guda biyu: germanium da silicon.

Me kuma za a karanta

Ernest Bruan da Stuart MacDonald, Juyin Juya Hali a Miniature (1978)

Friedrich Kurylo da Charles Susskind, Ferdinand Braun (1981)

GL Pearson da WH Brattain, "Tarihin Bincike na Semiconductor," Ayyukan IRE (Disamba 1955).

Michael Riordan da Lillian Hoddeson, Crystal Fire (1997)

source: www.habr.com

Add a comment