Gabatarwa zuwa SSDs. Part 4. Jiki

Gabatarwa zuwa SSDs. Part 4. Jiki
Sassan da suka gabata na jerin “Gabatarwa ga SSD” sun gaya wa mai karatu game da tarihin bullowar faifan SSD, mu’amala don mu’amala da su, da kuma abubuwan da suka shahara. Kashi na hudu zai yi magana game da adana bayanai a cikin faifai.

A cikin labaran da suka gabata a cikin jerin:

  1. Tarihin halittar HDD da SSD
  2. Bayyanar musaya na ajiya
  3. Siffofin sifofi

Ma'ajiyar bayanai a cikin tukwici masu ƙarfi za a iya raba su zuwa sassa biyu masu ma'ana: adana bayanai a cikin tantanin halitta ɗaya da tsara ma'ajin tantanin halitta.

Kowane tantanin halitta na ƙwanƙwaran tuƙi na jihar yana adanawa guda ɗaya ko fiye na bayanai. Ana amfani da bayanai iri-iri don adana bayanai. tafiyar matakai na jiki. Lokacin haɓaka tuƙi masu ƙarfi, an yi la'akari da adadi masu zuwa don ɓoye bayanan:

  • cajin lantarki (ciki har da ƙwaƙwalwar Flash);
  • lokacin maganadisu (magnetoresistive memory);
  • jihohin lokaci (ƙwaƙwalwar ajiya tare da canji a yanayin yanayi).

Ƙwaƙwalwar ajiya bisa cajin lantarki

Rufe bayanan ta amfani da caji mara kyau yana ƙunshe da mafita da yawa:

  • ultraviolet erasable ROM (EPROM);
  • ROM mai gogewa ta hanyar lantarki (EEPROM);
  • Flash memory.

Gabatarwa zuwa SSDs. Part 4. Jiki
Kowanne cell memori ne Ƙofar iyo MOSFET, wanda ke adana caji mara kyau. Bambancinsa daga transistor MOS na al'ada shine kasancewar kofa mai iyo - madugu a cikin dielectric Layer.

Lokacin da aka haifar da yuwuwar bambanci tsakanin magudanar ruwa da maɓuɓɓugar ruwa kuma akwai yuwuwar tasiri a ƙofar, halin yanzu zai gudana daga tushe zuwa magudanar ruwa. Duk da haka, idan akwai isasshe babban yuwuwar bambance-bambance, wasu electrons “suna karya” dielectric Layer kuma su ƙare a cikin ƙofar da ke iyo. Ana kiran wannan lamarin tasirin rami.

Gabatarwa zuwa SSDs. Part 4. Jiki
Ƙofar da ba ta da cajin da ba ta dace ba ta haifar da filin lantarki wanda ke hana ruwa gudu daga tushe zuwa magudanar ruwa. Bugu da ƙari, kasancewar electrons a cikin ƙofar da ke iyo yana ƙara ƙarfin wutar lantarki wanda transistor ke kunnawa. Tare da kowane "rubuta" zuwa ƙofar da ke iyo na transistor, dielectric Layer ya ɗan lalace, wanda ya sanya iyaka akan adadin sake rubutawa na kowane tantanin halitta.

Dawon Kahng da Simon Min Sze ne suka samar da MOSFETs-ƙofa a Bell Labs a cikin 1967. Daga baya, lokacin da ake nazarin lahani a cikin haɗaɗɗun da'irori, an lura cewa saboda cajin da ke cikin ƙofar da ke iyo, ƙarfin ƙarfin ƙofar da ke buɗe transistor ya canza. Wannan binciken ya sa Dov Frohman ya fara aiki akan ƙwaƙwalwar ajiya bisa wannan al'amari.

Canza wutar lantarki na kofa yana ba ku damar "tsara" transistor. Transistor-gate ba za su kunna ba lokacin da ƙarfin gate ya fi ƙarfin ƙarfin kofa don transistor ba tare da electrons ba, amma ƙasa da ƙarfin ƙarfin kofa don transistor mai electrons. Bari mu kira wannan darajar karatun ƙarfin lantarki.

Ƙwaƙwalwar Ƙwaƙwalwar Ƙwaƙwalwar Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙadda ) Mai Ƙaƙwal ne Mai Ƙarfafawa Mai Ƙarfafawa Mai Ƙaƙwalwa Mai Ƙarfafawa Mai Ƙarfafawa Mai Ƙarfafa Ƙarfafawa Mai Iya Karatu-Kawai

Gabatarwa zuwa SSDs. Part 4. Jiki
A shekara ta 1971, ma'aikacin Intel Dov Frohman ya ƙirƙiri ƙwaƙwalwar sake rubutawa ta transistor mai suna. Ƙwaƙwalwar Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwaƙwalwa (EPROM). An yi rikodi cikin ƙwaƙwalwar ajiya ta amfani da na'ura ta musamman - mai tsara shirye-shirye. Mai shirye-shiryen yana amfani da ƙarfin lantarki mafi girma ga guntu fiye da yadda ake amfani da shi a cikin da'irori na dijital, don haka "rubutun" electrons zuwa ƙofofin iyo na transistor inda ake buƙata.

Gabatarwa zuwa SSDs. Part 4. Jiki
Ƙwaƙwalwar EPROM ba a yi niyya don tsaftace ƙofofin masu iyo na transistor ta hanyar lantarki ba. Maimakon haka, an ba da shawarar fallasa transistor zuwa hasken ultraviolet mai ƙarfi, wanda photons zai ba wa electrons makamashin da ake buƙata don tserewa daga ƙofar da ke iyo. Don ƙyale hasken ultraviolet ya shiga zurfi cikin guntu, an ƙara gilashin quartz a cikin gidaje.

Gabatarwa zuwa SSDs. Part 4. Jiki

Froman ya fara gabatar da samfurin sa na EPROM a watan Fabrairun 1971 a babban taron IC na jiha a Philadelphia. Gordon Moore ya tuno da zanga-zangar: “Dov ya nuna tsarin bit a cikin sel ƙwaƙwalwar EPROM. Lokacin da sel suka fallasa ga hasken ultraviolet, ɓangarorin sun ɓace ɗaya bayan ɗaya har sai an goge tambarin Intel wanda ba a sani ba gaba ɗaya. ... Ƙarar ta ɓace, kuma lokacin da na ƙarshe ya ɓace, dukan masu sauraro sun fashe da tafi. An gane labarin Dov a matsayin mafi kyau a taron. " - Fassarar labarin newsroom.intel.com

Ƙwaƙwalwar EPROM ta fi tsada fiye da na'urorin ƙwaƙwalwar ajiya masu karantawa kawai (ROM) da aka yi amfani da su a baya, amma ikon sake tsarawa yana ba ku damar zazzage da'irori cikin sauri da rage lokacin da ake buƙata don haɓaka sabbin kayan aiki.

Sake tsara ROMs tare da hasken ultraviolet babban ci gaba ne, duk da haka, ra'ayin sake rubuta wutar lantarki ya riga ya kasance a cikin iska.

Ƙwaƙwalwar Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwararren Ƙwaƙwalwa na Ƙadda ) Mai Ƙaddamar da za a iya yi

A cikin 1972, Jafananci uku: Yasuo Tarui, Yutaka Hayashi da Kiyoko Nagai sun ƙaddamar da ƙwaƙwalwar karantawa kawai ta hanyar lantarki (EEPROM ko E2PROM). Daga baya, binciken su na kimiyya zai zama wani ɓangare na haƙƙin mallaka don aiwatar da kasuwanci na ƙwaƙwalwar EEPROM.

Kowane tantanin ƙwaƙwalwar ajiyar EEPROM ya ƙunshi transistor da yawa:

  • transistor gate mai iyo don ajiyar bit;
  • transistor don sarrafa yanayin rubuta-karanta.

Wannan zane yana daɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗaɗakaɗakaɗakaɗakaɗakaɗakaɗakaɗakamarmar EEPROM. Har yanzu ana amfani da EPROM don adana bayanai masu yawa.

Flash memory

Ƙwaƙwalwar ƙwaƙwalwa, haɗa mafi kyawun fasalulluka na EPROM da EEPROM, farfesa na Japan Fujio Masuoka, injiniya a Toshiba, ya haɓaka a cikin 1980. Ci gaba na farko ana kiransa NOR Flash memory kuma, kamar waɗanda suka gabace shi, ya dogara ne akan MOSFETs masu iyo-ƙofa.

Gabatarwa zuwa SSDs. Part 4. Jiki
NO filash memori ne mai girma biyu tsarar transistor. Ana haɗa ƙofofin transistor zuwa layin kalma, kuma magudanan suna haɗawa da layin bit. Lokacin da aka yi amfani da wutar lantarki a kan layin kalma, transistor masu ɗauke da electrons, wato, adana “ɗaya,” ba za su buɗe ba kuma na yanzu ba zai gudana ba. Dangane da kasancewar ko rashi na yanzu akan layin bit, an zana ƙarshe game da ƙimar bit.

Gabatarwa zuwa SSDs. Part 4. Jiki
Bayan shekaru bakwai, Fujio Masuoka ya haɓaka ƙwaƙwalwar NAND Flash. Wannan nau'in ƙwaƙwalwar ajiya ya bambanta da adadin transistor akan layin bit. A cikin ƙwaƙwalwar NOR, kowane transistor yana haɗa kai tsaye zuwa layin bit, yayin da a cikin ƙwaƙwalwar NAND, ana haɗa transistor a jere.

Gabatarwa zuwa SSDs. Part 4. Jiki
Karatu daga ƙwaƙwalwar ajiyar wannan ƙayyadaddun yana da wahala: ƙarfin lantarki da ake buƙata don karantawa ana amfani da shi zuwa layin da ake buƙata na kalmar, kuma ana amfani da ƙarfin lantarki akan duk sauran layin kalmar, wanda ke buɗe transistor ba tare da la'akari da matakin cajin da ke cikinta ba. Tunda duk sauran transistor suna da tabbacin buɗewa, kasancewar ƙarfin lantarki akan layin bit ya dogara ne akan transistor ɗaya kawai, wanda ake amfani da ƙarfin karantawa.

Ƙirƙirar ƙwaƙwalwar ajiyar NAND Flash yana ba da damar damfara da'ira sosai, sanya ƙarin ƙwaƙwalwar ajiya cikin girman iri ɗaya. Har zuwa 2007, an ƙara ƙarfin ƙwaƙwalwar ajiya ta hanyar rage tsarin masana'anta na guntu.

A cikin 2007, Toshiba ya gabatar da sabon sigar ƙwaƙwalwar NAND: A tsaye NAND (V-NAND), kuma aka sani da 3D NAND. Wannan fasaha tana ba da fifiko kan sanya transistor a cikin yadudduka da yawa, wanda ke sake ba da izinin kewayawa mai yawa da ƙara ƙarfin ƙwaƙwalwar ajiya. Duk da haka, ba za a iya maimaita ƙaddamar da kewaye ba har abada, don haka an binciko wasu hanyoyin don ƙara ƙarfin ajiya.

Gabatarwa zuwa SSDs. Part 4. Jiki
Da farko, kowane transistor ya adana matakan caji biyu: sifili na ma'ana da na ma'ana ɗaya. Ana kiran wannan hanyar Cell-Level Cell (SLC). Direbobi masu wannan fasaha abin dogaro ne sosai kuma suna da matsakaicin adadin sake rubutawa.

A tsawon lokaci, an yanke shawarar ƙara yawan ƙarfin ajiya a farashin juriya na lalacewa. Don haka adadin matakan caji a cikin tantanin halitta ya kai har huɗu, kuma ana kiran fasahar Multi-Level Cell (MLC). Gaba ya zo Cell-Level Cell (TLC) и Kwayoyin matakin Quad-Level (QLC). Za a sami sabon matakin nan gaba - Penta-Level Cell (PLC) tare da rago biyar a kowane tantanin halitta. Yawancin raƙuman raƙuman raƙuman ruwa sun dace cikin tantanin halitta ɗaya, mafi girman ƙarfin ajiya a farashi ɗaya, amma ƙarancin juriya.

Ƙirƙirar da'irar ta hanyar rage tsarin fasaha da haɓaka adadin ragowa a cikin transistor guda ɗaya yana rinjayar bayanan da aka adana mara kyau. Duk da cewa EPROM da EEPROM suna amfani da transistor iri ɗaya, EPROM da EEPROM na iya adana bayanai ba tare da wuta ba har tsawon shekaru goma, yayin da ƙwaƙwalwar Flash na zamani na iya "manta" komai bayan shekara.

Yin amfani da ƙwaƙwalwar ajiyar Flash a cikin masana'antar sararin samaniya yana da wahala saboda radiation yana da mummunar tasiri a kan electrons a cikin ƙofofin iyo.

Waɗannan matsalolin suna hana ƙwaƙwalwar Flash ɗin zama jagorar da ba a saba da shi ba a fagen adana bayanai. Duk da cewa na'urorin da ke kan ƙwaƙwalwar Flash ɗin sun yaɗu sosai, ana ci gaba da bincike kan wasu nau'ikan ƙwaƙwalwar ajiya waɗanda ba su da waɗannan illolin, gami da adana bayanai a cikin lokutan maganadisu da jihohin lokaci.

Magnetoresitive memory

Gabatarwa zuwa SSDs. Part 4. Jiki
Bayanan ɓoye tare da lokacin maganadisu ya bayyana a cikin 1955 a cikin nau'in ƙwaƙwalwar ajiya akan muryoyin maganadisu. Har zuwa tsakiyar 1970s, ƙwaƙwalwar ferrite ita ce babban nau'in ƙwaƙwalwar ajiya. Karatu kadan daga irin wannan nau'in ƙwaƙwalwar ajiya ya haifar da lalata zobe da asarar bayanai. Don haka, bayan karantawa kaɗan, dole ne a sake rubuta shi.

A cikin ci gaban zamani na ƙwaƙwalwar ƙwaƙwalwa na magnetoresistive, maimakon zobe, ana amfani da yadudduka biyu na feromagnet, rabuwa ta hanyar dielectric. Layer ɗaya shine maganadisu na dindindin, na biyu kuma yana canza alkiblar maganadisu. Karatu kadan daga irin wannan tantanin halitta yana saukowa don auna juriya lokacin wucewa ta halin yanzu: idan yadudduka suna magnetized a wasu wurare, to juriya ya fi girma kuma wannan yayi daidai da ƙimar “1”.

Ƙwaƙwalwar Ferrite baya buƙatar tushen wutar lantarki akai-akai don kula da bayanan da aka yi rikodin, duk da haka, filin maganadisu na tantanin halitta zai iya rinjayar "makwabcin", wanda ke sanya iyaka akan ƙaddamarwar kewayawa.

A cewar JEDEC Driver SSD dangane da ƙwaƙwalwar Flash ba tare da iko ba dole ne su riƙe bayanai na akalla watanni uku a yanayin zafi na 40°C. Intel ne ya tsara shi guntu dangane da ƙwaƙwalwar magnetoresistive yayi alkawarin adana bayanai na tsawon shekaru goma a 200 ° C.

Duk da rikitarwa na ci gaba, ƙwaƙwalwar magnetoresistive ba ta raguwa yayin amfani da ita kuma yana da mafi kyawun aiki a tsakanin sauran nau'ikan ƙwaƙwalwar ajiya, wanda baya barin irin wannan ƙwaƙwalwar ajiya a kashe.

Canjin ƙwaƙwalwar lokaci

Nau'in ƙwaƙwalwar ajiya na uku mai ban sha'awa shine ƙwaƙwalwar ajiya dangane da canjin lokaci. Irin wannan ƙwaƙwalwar tana amfani da kaddarorin chalcogenides don canzawa tsakanin jahohin crystalline da amorphous lokacin zafi.

Chalcogenides - binary mahadi na karafa tare da 16th kungiyar (6th rukuni na babban subgroup) na lokaci-lokaci tebur. Misali, CD-RW, DVD-RW, DVD-RAM da Blu-ray fayafai suna amfani da germanium telluride (GeTe) da antimony (III) telluride (Sb2Te3).

An gudanar da bincike kan amfani da canjin lokaci don adana bayanai a ciki 1960s shekara ta Stanford Ovshinsky, amma sai bai zo ga aiwatar da kasuwanci ba. A cikin 2000s, an sake sabunta sha'awar fasahar, fasahar fasaha ta Samsung wacce ke ba da damar sauya bit a cikin 5 ns, kuma Intel da STMicroelectronics sun ƙara adadin jihohi zuwa huɗu, ta haka ya ninka ƙarfin yuwuwar.

Lokacin da zafi sama da wurin narkewa, chalcogenide ya rasa tsarinsa na crystalline kuma, bayan sanyaya, ya juya ya zama nau'in amorphous da ke da ƙarfin juriya na lantarki. Bi da bi, lokacin da zafi zuwa zafin jiki sama da crystallization batu, amma a kasa da narke batu, da chalcogenide komawa zuwa wani crystalline jihar tare da low matakin juriya.

Ƙwaƙwalwar canjin lokaci baya buƙatar "sake caji" akan lokaci, kuma ba shi da sauƙi ga radiation, sabanin ƙwaƙwalwar cajin lantarki. Irin wannan ƙwaƙwalwar ajiyar na iya riƙe bayanai har tsawon shekaru 300 a zafin jiki na 85°C.

An yi imani da cewa ci gaban fasahar Intel 3D Crosspoint (3D XPoint) Yana amfani da canje-canjen lokaci don adana bayanai. Ana amfani da 3D XPoint a cikin Intel® Optane™ Ƙwaƙwalwar faifai, waɗanda ake da'awar suna da juriya mafi girma.

ƙarshe

Zane-zane na zahiri na tuƙi mai ƙarfi-jihar ya sami sauye-sauye da yawa sama da rabin ƙarni na tarihi, duk da haka, kowane mafita yana da nasa koma baya. Duk da shaharar da ba za a iya musantawa na ƙwaƙwalwar Flash ba, kamfanoni da yawa, ciki har da Samsung da Intel, suna bincika yiwuwar ƙirƙirar ƙwaƙwalwar ajiya dangane da lokacin maganadisu.

Rage lalacewa tantanin halitta, tara su, da haɓaka ƙarfin tuƙi gabaɗaya sune wuraren da a halin yanzu ke da alƙawarin ci gaba da ci gaban tuƙi mai ƙarfi.

Kuna iya gwada mafi kyawun NAND da 3D XPoint tafiyarwa a yanzu a cikin namu Zaɓi LAB.

Kuna tsammanin cewa fasahohin don adana bayanai akan cajin lantarki za a maye gurbinsu da wasu, alal misali, faifan quartz ko ƙwaƙwalwar gani akan nanocrystals gishiri?

source: www.habr.com

Add a comment