Korištenje Zabbixa za praćenje MS SQL Server baze podataka

predgovor

Često postoji potreba da se u realnom vremenu javi administratoru o problemima vezanim uz bazu (bazu podataka).

Ovaj članak će opisati što je potrebno konfigurirati u Zabbixu za praćenje MS SQL Server baze podataka.

Imajte na umu da detalji o tome kako konfigurirati neće biti dani, međutim, formule i opće preporuke, kao i detaljan opis dodavanja prilagođenih podatkovnih elemenata putem pohranjenih procedura bit će dani u ovom članku.
Također, ovdje će se raspravljati samo o glavnim brojačima performansi.

odluka

Prvo ću opisati sve one brojače performansi (kroz elemente podataka u Zabbixu) koji su nam potrebni:

  1. Logički disk
    1. Prosj. disk s/čitanje
      Prikazuje prosječno vrijeme, izraženo u sekundama, za čitanje podataka s diska. Prosječna vrijednost brojača prosječne izvedbe. Disk sec/Read ne smije prelaziti 10 milisekundi. Maksimalna vrijednost brojača performansi Prosj. Disk sec/Read ne smije prelaziti 50 milisekundi.

      Zabbix: perf_counter[LogicalDisk(_Total)Avg. Disk sec/Read], a također je važno pratiti željeni disk, npr. ovako: perf_counter[LogicalDisk(C:)Avg. Disk sek/čitanje]

      Primjeri okidača:
      {NODE_NAME:perf_counter[LogicalDisk(_Total)Avg. Disk sec/Read].last()}>0.005, visoka razina
      и
      {NODE_NAME:perf_counter[LogicalDisk(_Total)Avg. Disk sec/Read].last()}>0.0025, razina-srednja

    2. Prosj. disk sek/pisanje
      Prikazuje prosječno vrijeme, izraženo u sekundama, za pisanje podataka na disk. Prosječna vrijednost brojača prosječne izvedbe. Disk sec/Write ne smije prelaziti 10 milisekundi. Maksimalna vrijednost brojača performansi Prosj. Disk sec/Write ne smije prelaziti 50 milisekundi.

      Zabbix: perf_counter[LogicalDisk(_Total)Avg. Disk sec/Write], a također je važno pratiti željeni disk, npr. ovako: perf_counter[LogicalDisk(C:)Avg. Disk sec/Write]

      Primjeri okidača:
      {NODE_NAME:perf_counter[LogicalDisk(_Total)Avg. Disk sec/Write].last()}>0.005, visoka razina
      и
      {NODE_NAME:perf_counter[LogicalDisk(_Total)Avg. Disk sec/Write].last()}>0.0025, razina-srednja

    3. Prosječna duljina čekanja na disku

      Prosječna duljina čekanja zahtjeva na disku. Prikazuje broj zahtjeva za disk koji čekaju na obradu unutar određenog vremenskog intervala. Red čekanja od najviše 2 za jedan disk smatra se normalnim. Ako u redu čekanja ima više od dva zahtjeva, tada je disk možda preopterećen i ne može obraditi dolazne zahtjeve. Pomoću brojača Avg možete točno saznati koje operacije disk ne može podnijeti. Duljina čekanja za čitanje diska i prosj. Disk Wright Queue Length (red zahtjeva za pisanje).
      Prosječna vrijednost Duljina čekanja na disku se ne mjeri, već se izračunava koristeći Littleov zakon iz matematičke teorije čekanja u redu. Prema ovom zakonu, broj zahtjeva koji čekaju na obradu u prosjeku je jednak učestalosti zahtjeva pomnoženoj s vremenom obrade zahtjeva. Oni. u našem slučaju Prosj. Duljina reda čekanja na disku = (Prijenosi diska/s) * (Prosj. disk s/prijenos).

      Prosj. Disk Queue Length je dan kao jedan od glavnih brojača za određivanje opterećenja diskovnog podsustava, međutim, da bi se to adekvatno procijenilo, potrebno je točno prikazati fizičku strukturu sustava za pohranu podataka. Na primjer, za jedan tvrdi disk vrijednost veća od 2 smatra se kritičnom, a ako se disk nalazi na RAID polju od 4 diska, trebali biste se zabrinuti ako je vrijednost veća od 4*2=8.

      Zabbix: perf_counter[LogicalDisk(_Total)Avg. Disk Queue Length], a također je važno pratiti željeni disk, npr. ovako: perf_counter[LogicalDisk(C:)Avg. Duljina čekanja na disku]

  2. memorija
    1. Stranice/sek
      Prikazuje broj stranica koje je SQL Server pročitao s diska ili zapisao na disk kako bi razriješio pristupe stranicama memorije koje nisu učitane u RAM u trenutku pristupa. Ova vrijednost je zbroj stranica ulaza/s i izlaza stranica/s, a također uzima u obzir straničenje (straničenje/swaping) predmemorije sustava za pristup podatkovnim datotekama aplikacije. Dodatno, ovo uključuje straničenje datoteka koje nisu u predmemoriji koje su izravno mapirane u memoriju. Ovo je glavni brojač koji bi trebalo nadzirati ako imate veliku upotrebu memorije i povezano prekomjerno straničenje. Ovaj brojač karakterizira količinu zamjene i njegova bi normalna (ne vršna) vrijednost trebala biti blizu nule. Povećanje zamjene ukazuje na potrebu povećanja RAM-a ili smanjenja broja aplikacijskih programa koji se izvode na poslužitelju.

      Zabbix: perf_counter[MemoryPages/sec] Primjer okidača:
      {NODE_NAME:perf_counter[MemoryPages/sec].min(5m)}>1000, informacije o razini

    2. Greške stranice/sek

      Ovo je vrijednost brojača grešaka na stranici. Pogreška stranice se događa kada se proces poziva na stranicu virtualne memorije koja nije u radnom skupu RAM-a. Ovaj brojač uzima u obzir i one pogreške stranice koje zahtijevaju pristup disku i one koje su uzrokovane time što je stranica izvan radnog skupa u RAM-u. Većina procesora može obraditi tip XNUMX greške stranice bez puno odgode. Međutim, rukovanje pogreškama stranice tipa XNUMX koje zahtijevaju pristup disku može uzrokovati značajna kašnjenja.

      Zabbix: perf_counter[greške memorijske stranice/s] Primjer okidača:
      {NODE_NAME:perf_counter[MemoryPage Faults/sec].min(5m)}>1000, informacije o razini

    3. Dostupni bajtovi

      Prati količinu dostupne memorije u bajtovima za pokretanje različitih procesa. Niska očitanja ukazuju na nedostatak memorije. Rješenje je povećati memoriju. Ovaj mjerač bi u većini slučajeva trebao biti stalno iznad 5000 kV.
      Ima smisla ručno postaviti prag za raspoložive megabajte iz sljedećih razloga:

      • Dostupno 50% slobodne memorije = Izvrsno
      •25% dostupne memorije = Potrebna je pažnja
      •10% besplatno = Mogući problemi
      •Manje od 5% dostupne memorije = Presudno za brzinu, morate intervenirati.
      Zabbix: perf_counter[Memorijski dostupni bajtovi]

  3. Procesor (ukupno): % vremena procesora
    Ovaj brojač pokazuje postotak vremena u kojem je procesor bio zauzet izvršavanjem operacija za niti koje nisu u mirovanju. Ova se vrijednost može smatrati udjelom vremena provedenog u obavljanju korisnog rada. Svaki procesor može se dodijeliti praznoj niti, koja troši neproduktivne cikluse procesora koje druge niti ne koriste. Ovaj brojač karakteriziraju kratki vrhovi koji mogu doseći 100 posto. Međutim, ako postoje dulja razdoblja kada je iskorištenost procesora iznad 80 posto, tada će sustav biti učinkovitiji s više procesora.

    Zabbix: perf_counter[Procesor(_Total)% Processor Time], ovdje se također može prikazati prema jezgri
    Primjer okidača:
    {NODE_NAME:perf_counter[Processor(_Total)% Processor Time].min(5m)}>80, informacije o razini

  4. Mrežno sučelje (*): % ukupno bajtova/sek
    Ukupan broj poslanih i primljenih bajtova u sekundi preko svih sučelja. Ovo je propusnost sučelja (u bajtovima). Potrebno je usporediti vrijednost ovog brojača s maksimalnom propusnošću mrežne kartice. Općenito, ovaj brojač ne bi trebao pokazati više od 50% iskorištenja propusnosti mrežnog adaptera.
    Zabbix: perf_counter[Mrežno sučelje(*)Poslani bajtovi/s]
  5. MS SQL Server: Metode pristupa
    Objekt Access Methods u SQL Serveru pruža brojače koji pomažu u praćenju pristupa logičkim podacima unutar baze podataka. Fizički pristup stranicama baze podataka na disku kontrolira se pomoću brojača upravitelja međuspremnika. Praćenje metoda pristupa podacima u bazi podataka pomaže u određivanju može li se izvedba upita poboljšati dodavanjem ili promjenom indeksa, dodavanjem ili premještanjem particija, dodavanjem datoteka ili grupa datoteka, defragmentiranjem indeksa ili promjenom teksta upita. Dodatno, možete koristiti brojače objekata Access Methods za praćenje veličine podataka, indeksa i slobodnog prostora u vašoj bazi podataka, kapacitet praćenja i fragmentaciju za svaku instancu poslužitelja. Pretjerana fragmentacija indeksa može značajno smanjiti performanse.

    1. Podjela stranica/sek
      Broj dijeljenja stranice u sekundi izvedenih kao rezultat prelijevanja stranice indeksa. Visoka vrijednost za ovu metriku znači da prilikom izvođenja operacija umetanja i ažuriranja podataka, SQL Server mora izvesti veliki broj operacija koje zahtijevaju velike resurse kako bi podijelio stranice i premjestio dio postojeće stranice na novu lokaciju. Takve operacije treba izbjegavati kad god je to moguće. Problem možete pokušati riješiti na dva načina:
      — stvorite grupirani indeks za auto-inkrementirajuće stupce. U tom slučaju novi zapisi neće biti smješteni unutar stranica koje su već zauzete podacima, već će sekvencijalno zauzimati nove stranice;
      — ponovno izgraditi indekse povećanjem vrijednosti parametra Fillfactor. Ova vam opcija omogućuje rezerviranje slobodnog prostora na stranicama indeksa koji će se koristiti za smještaj novih podataka, bez potrebe za operacijama dijeljenja stranica.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Access MethodsPage Splits/sec",30] Primjer okidača: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Access MethodsPage Splits/sec",30].last()}>{NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:SQL StatisticsBatch Requests/sec",30].last()} /5, nivo-informacija
    2. Puna skeniranja/sek
      Neograničen broj punih skeniranja u sekundi. Ove operacije uključuju skeniranje glavne tablice i skeniranje cijelog indeksa. Stabilno povećanje ovog pokazatelja može ukazivati ​​na degradaciju sustava (nedostatak potrebnih indeksa, njihova teška fragmentacija, neuspjeh optimizatora da koristi postojeće indekse, prisutnost neiskorištenih indeksa). Međutim, vrijedi napomenuti da potpuno skeniranje u malim tablicama nije uvijek loše, jer ako možete smjestiti cijelu tablicu u RAM, tada će potpuno skeniranje biti brže. Ali u većini slučajeva, stabilno povećanje ovog brojača ukazivati ​​će na degradaciju sustava. Sve ovo vrijedi samo za OLTP sustave. U OLAP sustavima stalna puna skeniranja su normalna.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Access MethodsFull Scans/sec",30]

  6. MS SQL Server: Upravitelj međuspremnika
    Objekt Buffer Manager pruža brojače koji vam pomažu u praćenju kako SQL Server koristi sljedeće resurse:
    — memorija za pohranjivanje stranica s podacima;
    - brojači koji prate fizički I/O dok SQL Server čita i piše stranice baze podataka;
    - proširenje međuspremnika za proširenje međuspremnika pomoću brze trajne memorije, kao što su solid state diskovi (SSD);
    - Praćenje memorije i brojača koje koristi SQL Server pomaže u dobivanju sljedećih informacija;
    — postoje li uska grla uzrokovana nedostatkom fizičke memorije. Ako se često pristupani podaci ne mogu pohraniti u predmemoriju, SQL Server ih je prisiljen pročitati s diska;
    Je li moguće poboljšati izvedbu upita povećanjem količine memorije ili dodjelom dodatne memorije za predmemoriju podataka ili pohranu internih struktura SQL Servera?
    — koliko često SQL Server čita podatke s diska. U usporedbi s drugim operacijama kao što je pristup memoriji, za dovršetak fizičkog I/O-a potrebno je više vremena. Smanjenje I/O može poboljšati izvedbu upita.

    1. Buffer Cache hit radio
      Označava koliko podataka SQL Server može stati u međuspremnik predmemorije. Što je ova vrijednost veća, to bolje, jer Da bi SQL Server učinkovito pristupio stranicama s podacima, one moraju biti u međuspremniku i ne smiju postojati fizičke ulazno/izlazne (I/O) operacije. Ako vidite stalan pad prosječne vrijednosti ovog brojača, trebali biste razmisliti o dodavanju RAM-a. Ovaj bi pokazatelj uvijek trebao biti iznad 90% za OLTP sustave i iznad 50% za OLAP sustave.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Upravitelj međuspremnika međuspremnik omjer pogodaka",30] Primjeri okidača: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Buffer ManagerBuffer cache hit ratio",30].last()}<70, level-high
      и
      {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Buffer Manager Buffer cache hit ratio",30].last()}<80, level-medium
    2. Očekivani životni vijek stranice
      Pokazuje koliko dugo će stranica ostati trajno u memoriji u svom trenutnom stanju. Ako vrijednost nastavi padati, to znači da sustav zlorabi međuspremnik. Stoga rad memorije potencijalno može uzrokovati probleme koji rezultiraju lošim performansama. Vrijedno je napomenuti da ne postoji univerzalni indikator ispod kojeg se jasno može prosuditi da sustav zlorabi međuspremnik (indikator od 300 sekundi je zastario od MS SQL Servera 2012).
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Očekivani životni vijek stranice upravitelja međuspremnika",30] Primjer okidača: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Buffer ManagerPage očekivani životni vijek",30].last()}<5, level-information

  7. MS SQL Server: Opća statistika
    Objekt General Statistics u SQL Serveru pruža brojače koji vam omogućuju praćenje ukupne aktivnosti poslužitelja, kao što je broj istodobnih veza i broj korisnika u sekundi koji se povezuju na ili prekidaju vezu s računalom na kojem je pokrenuta instanca SQL Servera. Ove metrike su korisne u velikim sustavima za online obradu transakcija (OLTP) gdje se veliki broj klijenata stalno povezuje i prekida vezu s instancom SQL Servera.

    1. Proces blokiran
      Broj trenutno blokiranih procesa.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Blokirani procesi opće statistike",30] Primjer okidača: ({NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:General StatisticsProcesses blocked",30].min(2m,0)}>=0)
      i ({NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:General StatisticsProcesses blocked",30].time(0)}>=50000)
      i ({NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:General StatisticsProcesses blocked",30].time(0)}<=230000), razina informacija (ovdje postoji ograničenje signalizacije od 05:00 do 23:00)
    2. Korisničke veze
      Broj korisnika trenutno povezanih na SQL Server.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Korisničke veze opće statistike",30]

  8. MS SQL Server: brave
    Objekt Locks u Microsoft SQL Serveru pruža informacije o zaključavanjima SQL Servera dobivenim za pojedinačne vrste resursa. Zaključavanja se postavljaju na resurse SQL Servera, kao što su retci koje je transakcija pročitala ili izmijenila, kako bi se spriječilo da više transakcija koristi resurs u isto vrijeme. Na primjer, ako je ekskluzivno (X) zaključavanje stečeno transakcijom na retku u tablici, nijedna druga transakcija ne može promijeniti taj red dok se zaključavanje ne oslobodi. Minimiziranje upotrebe zaključavanja povećava istovremenost, što može poboljšati ukupnu izvedbu. Nekoliko instanci objekta Locks može se pratiti u isto vrijeme, od kojih će svaka predstavljati zaključavanje zasebne vrste resursa.

    1. Prosječno vrijeme čekanja (ms)
      Prosječno trajanje čekanja (u milisekundama) za sve zahtjeve za zaključavanje koji su zahtijevali čekanje. Ovaj brojač pokazuje koliko dugo, u prosjeku, korisnički procesi moraju čekati u redu čekanja da bi zaključali resurs. Najveća dopuštena vrijednost ovog brojača u potpunosti ovisi o vašem zadatku; teško je odrediti neku prosječnu vrijednost za sve primjene. Ako je ovaj brojač previsok, to može ukazivati ​​na probleme zaključavanja vaše baze podataka.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Prosječno vrijeme čekanja (ms)",30] Primjer okidača: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Prosječno vrijeme čekanja (ms)",30].last()}>=500, informacije o razini
    2. Vrijeme čekanja zaključavanja (ms)
      Ukupno vrijeme čekanja zaključavanja (u milisekundama) u posljednjoj sekundi.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Vrijeme čekanja zaključavanja (ms)",30]
    3. Zaključavanje čeka/sek
      Broj puta u posljednjoj sekundi kada je nit morala čekati zbog zahtjeva za zaključavanjem.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Lock Waits/sec",30]
    4. Istek vremena zaključavanja/sek
      Broj puta kada se zaključavanje ne može preuzeti kružnim putem. Vrijednost konfiguracijskog parametra brojača vrtnje SQL Servera određuje koliko se puta nit može vrtjeti prije nego što istekne i nit postane neaktivna.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Timeouts Lock/sec",30] Primjer okidača: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Locks(_Total)Lock Timeouts/sec",30].last()}>1000, informacije o razini
    5. Zahtjevi za zaključavanje/sek
      Broj zahtjeva u sekundi navedene vrste zaključavanja.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Lock Requests/sec",30] Primjer okidača: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Lock Requests/sec",30].last()}>500000, informacije o razini
    6. Zaključaj Broj zastoja/sek
      Broj zahtjeva za zaključavanje u sekundi koji rezultiraju zastojem. Prisutnost zastoja ukazuje na loše konstruirane upite koji blokiraju zajedničke resurse.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Broj zastoja/s",30] Primjer okidača: {NODE_NAME:perf_counter["MSSQL$INSTANCE_NAME:Locks(_Total)Number of Deadlocks/sec",30].last()}>1, level-high

  9. MS SQL Server: Upravitelj memorije
    Objekt Memory Manager u Microsoft SQL Serveru nudi brojače za praćenje upotrebe memorije na cijelom poslužitelju. Praćenje korištenja memorije cijelog poslužitelja za procjenu aktivnosti korisnika i korištenja resursa može pomoći u prepoznavanju uskih grla u izvedbi. Nadzor memorije koji koristi instanca SQL Servera može pomoći u određivanju:
    — postoji li nedostatak fizičke memorije za pohranjivanje često korištenih podataka u predmemoriju. Ako nema dovoljno memorije, SQL Server mora dohvatiti podatke s diska;
    - Može li se izvedba upita poboljšati ako se doda memorija ili poveća količina dostupne memorije za predmemoriju podataka ili internih struktura SQL Servera.

    1. Dotacije za pamćenje izvanredne
      Označava ukupan broj procesa koji su uspješno osvojili memoriju radnog prostora. Ako indikator stalno pada, potrebno je povećati RAM.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Upravitelj memorije dodjeljuje izvanrednu memoriju",30]
    2. Dodjela memorije na čekanju
      Označava ukupan broj procesa koji čekaju na dodjelu radne memorije. Uz stabilan rast indikatora, potrebno je povećati RAM.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:Upravitelj memorije Dodjela memorije na čekanju",30]

  10. MS SQL Server: Statistika
    Objekt Statistics u Microsoft SQL Serveru nudi brojače za praćenje kompilacije i vrste upita poslanih instanci SQL Servera. Praćenje broja kompilacija i ponovnih kompilacija upita i broja paketa koje je primila instanca SQL Servera pruža uvid u to koliko brzo SQL Server izvršava korisničke upite i koliko ih učinkovito optimizator upita obrađuje.

    1. Skupni zahtjevi/sek
      Broj Transact-SQL paketa naredbi primljenih u sekundi. Na ovu statistiku utječu sva ograničenja (I/O, broj korisnika, veličina predmemorije, složenost upita itd.). Veliki broj zahtjeva za paketom ukazuje na visoku propusnost.
      Zabbix: perf_counter["MSSQL$INSTANCE_NAME:SQL StatisticsBatch Requests/sec",30]

Osim svega navedenog, možete konfigurirati i druge podatkovne elemente (kao i izraditi okidače na njima s naknadnim obavijestima). Na primjer:
1) količina slobodnog prostora na disku
2) veličine datoteka i zapisa baze podataka
i t. d.
Međutim, svi ti pokazatelji ne pokazuju problem upita u stvarnom vremenu.
Da biste to učinili, morate izraditi vlastite posebne brojače.
Zbog povjerljivosti neću navoditi primjere takvih brojača. Štoviše, konfigurirani su jedinstveno za svaki sustav. Ali napominjem da se za sustave kao što su 1C, NAV i CRM mogu stvoriti specijalizirani brojači zajedno s relevantnim programerima.
Dat ću primjer stvaranja generaliziranog pokazatelja koji pokazuje koliko je zahtjeva pokrenuto i koliko je zahtjeva na čekanju (suspendiranih ili blokiranih) u svakom trenutku.
Da biste to učinili, morate stvoriti pohranjenu proceduru:
Šifra

USE [ИМЯ_БАЗЫ_ДАННЫХ]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [nav].[ZabbixGetCountRequestStatus]
	@Status nvarchar(255)
AS
BEGIN
	/*
		возвращает кол-во запросов с заданным статусом
	*/
	SET NOCOUNT ON;

	select count(*) as [Count]
	from sys.dm_exec_requests ER with(readuncommitted)
	where [status]=@Status
END

Zatim morate otići u mapu u kojoj se nalazi Zabbix (zabbixconfuserparams.d) i kreirati 2 datoteke s ekstenzijom ps1 (PowerShell) i upisati sljedeće kodove u svaku od njih:
Kod za pokretanje upita

$SQLServer = "НАЗВАНИЕ_ЭКЗЕМПЛЯРА";
$uid = "ЛОГИН"; 
$pwd = "ПАРОЛЬ";
$Status="running";

$connectionString = "Server = $SQLServer; Database=НАЗВАНИЕ_БД; Integrated Security = False; User ID = $uid; Password = $pwd;";

$connection = New-Object System.Data.SqlClient.SqlConnection;
$connection.ConnectionString = $connectionString;

#Создаем запрос непосредственно к MSSQL / Create a request directly to MSSQL
$SqlCmd = New-Object System.Data.SqlClient.SqlCommand;
$SqlCmd.CommandType = [System.Data.CommandType]::StoredProcedure;  
$SqlCmd.CommandText = "nav.ZabbixGetCountRequestStatus";
$SqlCmd.Connection = $Connection;

$paramStatus=$SqlCmd.Parameters.Add("@Status" , [System.Data.SqlDbType]::VarChar);
$paramStatus.Value = $Status;

$connection.Open();
$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter;
$SqlAdapter.SelectCommand = $SqlCmd;
$DataSet = New-Object System.Data.DataSet;
$SqlAdapter.Fill($DataSet) > $null;
$connection.Close();

$result = $DataSet.Tables[0].Rows[0]["Count"];

write-host $result;

Šifra za zahtjeve na čekanju

$SQLServer = "НАЗВАНИЕ_ЭКЗЕМПЛЯРА";
$uid = "ЛОГИН"; 
$pwd = "ПАРОЛЬ";
$Status="suspended";

$connectionString = "Server = $SQLServer; Database=НАЗВАНИЕ_БД; Integrated Security = False; User ID = $uid; Password = $pwd;";

$connection = New-Object System.Data.SqlClient.SqlConnection;
$connection.ConnectionString = $connectionString;

#Создаем запрос непосредственно к MSSQL / Create a request directly to MSSQL
$SqlCmd = New-Object System.Data.SqlClient.SqlCommand;
$SqlCmd.CommandType = [System.Data.CommandType]::StoredProcedure;  
$SqlCmd.CommandText = "nav.ZabbixGetCountRequestStatus";
$SqlCmd.Connection = $Connection;

$paramStatus=$SqlCmd.Parameters.Add("@Status" , [System.Data.SqlDbType]::VarChar);
$paramStatus.Value = $Status;

$connection.Open();
$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter;
$SqlAdapter.SelectCommand = $SqlCmd;
$DataSet = New-Object System.Data.DataSet;
$SqlAdapter.Fill($DataSet) > $null;
$connection.Close();

$result = $DataSet.Tables[0].Rows[0]["Count"];

write-host $result;

Sada morate stvoriti datoteku s korisničkim parametrima i ekstenzijom .conf (ili dodati retke postojećoj takvoj korisničkoj datoteci, ako je stvorena ranije) i umetnuti sljedeće retke:
UserParameter=PARAMETER_NAME_NUMBER_of_QUERIES EXECUTED,powershell -NoProfile -ExecutionPolicy Bypass -File FULL_PATHzabbixconfuserparams.dFILE_NAME_FOR_EXECUTED_QUERYES.ps1
UserParameter=PARAMETER_NAME_NUMBER_WAITING_REQUESTS,powershell -NoProfile -ExecutionPolicy Bypass -File FULL_PATHzabbixconfuserparams.dFILE_NAME_FOR_WAITING_REQUESTS.ps1
Nakon toga spremite .conf datoteku i ponovno pokrenite Zabbix agenta.
Nakon ovoga dodajemo dva nova elementa u Zabbix (u ovom slučaju, imena i ključ su isti):
PARAMETER_NAME_NUMBER OF_REQUESTS IZVRŠEN
PARAMETER_NAME_NUMBER OF_WAITING_REQUESTS
Sada možete izraditi grafikone i okidače za stvorene prilagođene podatkovne stavke.

Ako se broj zahtjeva na čekanju naglo poveća, tada sljedeći upit može prikazati sve pokrenute zahtjeve i zahtjeve na čekanju u određenom trenutku s pojedinostima o tome gdje i pod kojom prijavom je zahtjev izvršen, tekst i plan upita, kao i druge detalje:
Šifra

/*Активные, готовые к выполнению и ожидающие запросы, а также те, что явно блокируют другие сеансы*/
with tbl0 as (
select ES.[session_id]
,ER.[blocking_session_id]
,ER.[request_id]
,ER.[start_time]
,ER.[status]
,ES.[status] as [status_session]
,ER.[command]
,ER.[percent_complete]
,DB_Name(coalesce(ER.[database_id], ES.[database_id])) as [DBName]
,(select top(1) [text] from sys.dm_exec_sql_text(ER.[sql_handle])) as [TSQL]
,(select top(1) [objectid] from sys.dm_exec_sql_text(ER.[sql_handle])) as [objectid]
,(select top(1) [query_plan] from sys.dm_exec_query_plan(ER.[plan_handle])) as [QueryPlan]
,ER.[wait_type]
,ES.[login_time]
,ES.[host_name]
,ES.[program_name]
,ER.[wait_time]
,ER.[last_wait_type]
,ER.[wait_resource]
,ER.[open_transaction_count]
,ER.[open_resultset_count]
,ER.[transaction_id]
,ER.[context_info]
,ER.[estimated_completion_time]
,ER.[cpu_time]
,ER.[total_elapsed_time]
,ER.[scheduler_id]
,ER.[task_address]
,ER.[reads]
,ER.[writes]
,ER.[logical_reads]
,ER.[text_size]
,ER.[language]
,ER.[date_format]
,ER.[date_first]
,ER.[quoted_identifier]
,ER.[arithabort]
,ER.[ansi_null_dflt_on]
,ER.[ansi_defaults]
,ER.[ansi_warnings]
,ER.[ansi_padding]
,ER.[ansi_nulls]
,ER.[concat_null_yields_null]
,ER.[transaction_isolation_level]
,ER.[lock_timeout]
,ER.[deadlock_priority]
,ER.[row_count]
,ER.[prev_error]
,ER.[nest_level]
,ER.[granted_query_memory]
,ER.[executing_managed_code]
,ER.[group_id]
,ER.[query_hash]
,ER.[query_plan_hash]
,EC.[most_recent_session_id]
,EC.[connect_time]
,EC.[net_transport]
,EC.[protocol_type]
,EC.[protocol_version]
,EC.[endpoint_id]
,EC.[encrypt_option]
,EC.[auth_scheme]
,EC.[node_affinity]
,EC.[num_reads]
,EC.[num_writes]
,EC.[last_read]
,EC.[last_write]
,EC.[net_packet_size]
,EC.[client_net_address]
,EC.[client_tcp_port]
,EC.[local_net_address]
,EC.[local_tcp_port]
,EC.[parent_connection_id]
,EC.[most_recent_sql_handle]
,ES.[host_process_id]
,ES.[client_version]
,ES.[client_interface_name]
,ES.[security_id]
,ES.[login_name]
,ES.[nt_domain]
,ES.[nt_user_name]
,ES.[memory_usage]
,ES.[total_scheduled_time]
,ES.[last_request_start_time]
,ES.[last_request_end_time]
,ES.[is_user_process]
,ES.[original_security_id]
,ES.[original_login_name]
,ES.[last_successful_logon]
,ES.[last_unsuccessful_logon]
,ES.[unsuccessful_logons]
,ES.[authenticating_database_id]
,ER.[sql_handle]
,ER.[statement_start_offset]
,ER.[statement_end_offset]
,ER.[plan_handle]
,ER.[dop]
,coalesce(ER.[database_id], ES.[database_id]) as [database_id]
,ER.[user_id]
,ER.[connection_id]
from sys.dm_exec_requests ER with(readuncommitted)
right join sys.dm_exec_sessions ES with(readuncommitted)
on ES.session_id = ER.session_id 
left join sys.dm_exec_connections EC  with(readuncommitted)
on EC.session_id = ES.session_id
)
, tbl as (
select [session_id]
,[blocking_session_id]
,[request_id]
,[start_time]
,[status]
,[status_session]
,[command]
,[percent_complete]
,[DBName]
,OBJECT_name([objectid], [database_id]) as [object]
,[TSQL]
,[QueryPlan]
,[wait_type]
,[login_time]
,[host_name]
,[program_name]
,[wait_time]
,[last_wait_type]
,[wait_resource]
,[open_transaction_count]
,[open_resultset_count]
,[transaction_id]
,[context_info]
,[estimated_completion_time]
,[cpu_time]
,[total_elapsed_time]
,[scheduler_id]
,[task_address]
,[reads]
,[writes]
,[logical_reads]
,[text_size]
,[language]
,[date_format]
,[date_first]
,[quoted_identifier]
,[arithabort]
,[ansi_null_dflt_on]
,[ansi_defaults]
,[ansi_warnings]
,[ansi_padding]
,[ansi_nulls]
,[concat_null_yields_null]
,[transaction_isolation_level]
,[lock_timeout]
,[deadlock_priority]
,[row_count]
,[prev_error]
,[nest_level]
,[granted_query_memory]
,[executing_managed_code]
,[group_id]
,[query_hash]
,[query_plan_hash]
,[most_recent_session_id]
,[connect_time]
,[net_transport]
,[protocol_type]
,[protocol_version]
,[endpoint_id]
,[encrypt_option]
,[auth_scheme]
,[node_affinity]
,[num_reads]
,[num_writes]
,[last_read]
,[last_write]
,[net_packet_size]
,[client_net_address]
,[client_tcp_port]
,[local_net_address]
,[local_tcp_port]
,[parent_connection_id]
,[most_recent_sql_handle]
,[host_process_id]
,[client_version]
,[client_interface_name]
,[security_id]
,[login_name]
,[nt_domain]
,[nt_user_name]
,[memory_usage]
,[total_scheduled_time]
,[last_request_start_time]
,[last_request_end_time]
,[is_user_process]
,[original_security_id]
,[original_login_name]
,[last_successful_logon]
,[last_unsuccessful_logon]
,[unsuccessful_logons]
,[authenticating_database_id]
,[sql_handle]
,[statement_start_offset]
,[statement_end_offset]
,[plan_handle]
,[dop]
,[database_id]
,[user_id]
,[connection_id]
from tbl0
where [status] in ('suspended', 'running', 'runnable')
)
, tbl_group as (
select [blocking_session_id]
from tbl
where [blocking_session_id]<>0
group by [blocking_session_id]
)
, tbl_res_rec as (
select [session_id]
,[blocking_session_id]
,[request_id]
,[start_time]
,[status]
,[status_session]
,[command]
,[percent_complete]
,[DBName]
,[object]
,[TSQL]
,[QueryPlan]
,[wait_type]
,[login_time]
,[host_name]
,[program_name]
,[wait_time]
,[last_wait_type]
,[wait_resource]
,[open_transaction_count]
,[open_resultset_count]
,[transaction_id]
,[context_info]
,[estimated_completion_time]
,[cpu_time]
,[total_elapsed_time]
,[scheduler_id]
,[task_address]
,[reads]
,[writes]
,[logical_reads]
,[text_size]
,[language]
,[date_format]
,[date_first]
,[quoted_identifier]
,[arithabort]
,[ansi_null_dflt_on]
,[ansi_defaults]
,[ansi_warnings]
,[ansi_padding]
,[ansi_nulls]
,[concat_null_yields_null]
,[transaction_isolation_level]
,[lock_timeout]
,[deadlock_priority]
,[row_count]
,[prev_error]
,[nest_level]
,[granted_query_memory]
,[executing_managed_code]
,[group_id]
,[query_hash]
,[query_plan_hash]
,[most_recent_session_id]
,[connect_time]
,[net_transport]
,[protocol_type]
,[protocol_version]
,[endpoint_id]
,[encrypt_option]
,[auth_scheme]
,[node_affinity]
,[num_reads]
,[num_writes]
,[last_read]
,[last_write]
,[net_packet_size]
,[client_net_address]
,[client_tcp_port]
,[local_net_address]
,[local_tcp_port]
,[parent_connection_id]
,[most_recent_sql_handle]
,[host_process_id]
,[client_version]
,[client_interface_name]
,[security_id]
,[login_name]
,[nt_domain]
,[nt_user_name]
,[memory_usage]
,[total_scheduled_time]
,[last_request_start_time]
,[last_request_end_time]
,[is_user_process]
,[original_security_id]
,[original_login_name]
,[last_successful_logon]
,[last_unsuccessful_logon]
,[unsuccessful_logons]
,[authenticating_database_id]
,[sql_handle]
,[statement_start_offset]
,[statement_end_offset]
,[plan_handle]
,[dop]
,[database_id]
,[user_id]
,[connection_id]
, 0 as [is_blocking_other_session]
from tbl
union all
select tbl0.[session_id]
,tbl0.[blocking_session_id]
,tbl0.[request_id]
,tbl0.[start_time]
,tbl0.[status]
,tbl0.[status_session]
,tbl0.[command]
,tbl0.[percent_complete]
,tbl0.[DBName]
,OBJECT_name(tbl0.[objectid], tbl0.[database_id]) as [object]
,tbl0.[TSQL]
,tbl0.[QueryPlan]
,tbl0.[wait_type]
,tbl0.[login_time]
,tbl0.[host_name]
,tbl0.[program_name]
,tbl0.[wait_time]
,tbl0.[last_wait_type]
,tbl0.[wait_resource]
,tbl0.[open_transaction_count]
,tbl0.[open_resultset_count]
,tbl0.[transaction_id]
,tbl0.[context_info]
,tbl0.[estimated_completion_time]
,tbl0.[cpu_time]
,tbl0.[total_elapsed_time]
,tbl0.[scheduler_id]
,tbl0.[task_address]
,tbl0.[reads]
,tbl0.[writes]
,tbl0.[logical_reads]
,tbl0.[text_size]
,tbl0.[language]
,tbl0.[date_format]
,tbl0.[date_first]
,tbl0.[quoted_identifier]
,tbl0.[arithabort]
,tbl0.[ansi_null_dflt_on]
,tbl0.[ansi_defaults]
,tbl0.[ansi_warnings]
,tbl0.[ansi_padding]
,tbl0.[ansi_nulls]
,tbl0.[concat_null_yields_null]
,tbl0.[transaction_isolation_level]
,tbl0.[lock_timeout]
,tbl0.[deadlock_priority]
,tbl0.[row_count]
,tbl0.[prev_error]
,tbl0.[nest_level]
,tbl0.[granted_query_memory]
,tbl0.[executing_managed_code]
,tbl0.[group_id]
,tbl0.[query_hash]
,tbl0.[query_plan_hash]
,tbl0.[most_recent_session_id]
,tbl0.[connect_time]
,tbl0.[net_transport]
,tbl0.[protocol_type]
,tbl0.[protocol_version]
,tbl0.[endpoint_id]
,tbl0.[encrypt_option]
,tbl0.[auth_scheme]
,tbl0.[node_affinity]
,tbl0.[num_reads]
,tbl0.[num_writes]
,tbl0.[last_read]
,tbl0.[last_write]
,tbl0.[net_packet_size]
,tbl0.[client_net_address]
,tbl0.[client_tcp_port]
,tbl0.[local_net_address]
,tbl0.[local_tcp_port]
,tbl0.[parent_connection_id]
,tbl0.[most_recent_sql_handle]
,tbl0.[host_process_id]
,tbl0.[client_version]
,tbl0.[client_interface_name]
,tbl0.[security_id]
,tbl0.[login_name]
,tbl0.[nt_domain]
,tbl0.[nt_user_name]
,tbl0.[memory_usage]
,tbl0.[total_scheduled_time]
,tbl0.[last_request_start_time]
,tbl0.[last_request_end_time]
,tbl0.[is_user_process]
,tbl0.[original_security_id]
,tbl0.[original_login_name]
,tbl0.[last_successful_logon]
,tbl0.[last_unsuccessful_logon]
,tbl0.[unsuccessful_logons]
,tbl0.[authenticating_database_id]
,tbl0.[sql_handle]
,tbl0.[statement_start_offset]
,tbl0.[statement_end_offset]
,tbl0.[plan_handle]
,tbl0.[dop]
,tbl0.[database_id]
,tbl0.[user_id]
,tbl0.[connection_id]
, 1 as [is_blocking_other_session]
from tbl_group as tg
inner join tbl0 on tg.blocking_session_id=tbl0.session_id
)
,tbl_res_rec_g as (
select [plan_handle],
[sql_handle],
cast([start_time] as date) as [start_time]
from tbl_res_rec
group by [plan_handle],
[sql_handle],
cast([start_time] as date)
)
,tbl_rec_stat_g as (
select qs.[plan_handle]
,qs.[sql_handle]
--,cast(qs.[last_execution_time] as date)	as [last_execution_time]
,min(qs.[creation_time])					as [creation_time]
,max(qs.[execution_count])				as [execution_count]
,max(qs.[total_worker_time])				as [total_worker_time]
,min(qs.[last_worker_time])				as [min_last_worker_time]
,max(qs.[last_worker_time])				as [max_last_worker_time]
,min(qs.[min_worker_time])				as [min_worker_time]
,max(qs.[max_worker_time])				as [max_worker_time]
,max(qs.[total_physical_reads])			as [total_physical_reads]
,min(qs.[last_physical_reads])			as [min_last_physical_reads]
,max(qs.[last_physical_reads])			as [max_last_physical_reads]
,min(qs.[min_physical_reads])				as [min_physical_reads]
,max(qs.[max_physical_reads])				as [max_physical_reads]
,max(qs.[total_logical_writes])			as [total_logical_writes]
,min(qs.[last_logical_writes])			as [min_last_logical_writes]
,max(qs.[last_logical_writes])			as [max_last_logical_writes]
,min(qs.[min_logical_writes])				as [min_logical_writes]
,max(qs.[max_logical_writes])				as [max_logical_writes]
,max(qs.[total_logical_reads])			as [total_logical_reads]
,min(qs.[last_logical_reads])				as [min_last_logical_reads]
,max(qs.[last_logical_reads])				as [max_last_logical_reads]
,min(qs.[min_logical_reads])				as [min_logical_reads]
,max(qs.[max_logical_reads])				as [max_logical_reads]
,max(qs.[total_clr_time])					as [total_clr_time]
,min(qs.[last_clr_time])					as [min_last_clr_time]
,max(qs.[last_clr_time])					as [max_last_clr_time]
,min(qs.[min_clr_time])					as [min_clr_time]
,max(qs.[max_clr_time])					as [max_clr_time]
,max(qs.[total_elapsed_time])				as [total_elapsed_time]
,min(qs.[last_elapsed_time])				as [min_last_elapsed_time]
,max(qs.[last_elapsed_time])				as [max_last_elapsed_time]
,min(qs.[min_elapsed_time])				as [min_elapsed_time]
,max(qs.[max_elapsed_time])				as [max_elapsed_time]
,max(qs.[total_rows])						as [total_rows]
,min(qs.[last_rows])						as [min_last_rows]
,max(qs.[last_rows])						as [max_last_rows]
,min(qs.[min_rows])						as [min_rows]
,max(qs.[max_rows])						as [max_rows]
,max(qs.[total_dop])						as [total_dop]
,min(qs.[last_dop])						as [min_last_dop]
,max(qs.[last_dop])						as [max_last_dop]
,min(qs.[min_dop])						as [min_dop]
,max(qs.[max_dop])						as [max_dop]
,max(qs.[total_grant_kb])					as [total_grant_kb]
,min(qs.[last_grant_kb])					as [min_last_grant_kb]
,max(qs.[last_grant_kb])					as [max_last_grant_kb]
,min(qs.[min_grant_kb])					as [min_grant_kb]
,max(qs.[max_grant_kb])					as [max_grant_kb]
,max(qs.[total_used_grant_kb])			as [total_used_grant_kb]
,min(qs.[last_used_grant_kb])				as [min_last_used_grant_kb]
,max(qs.[last_used_grant_kb])				as [max_last_used_grant_kb]
,min(qs.[min_used_grant_kb])				as [min_used_grant_kb]
,max(qs.[max_used_grant_kb])				as [max_used_grant_kb]
,max(qs.[total_ideal_grant_kb])			as [total_ideal_grant_kb]
,min(qs.[last_ideal_grant_kb])			as [min_last_ideal_grant_kb]
,max(qs.[last_ideal_grant_kb])			as [max_last_ideal_grant_kb]
,min(qs.[min_ideal_grant_kb])				as [min_ideal_grant_kb]
,max(qs.[max_ideal_grant_kb])				as [max_ideal_grant_kb]
,max(qs.[total_reserved_threads])			as [total_reserved_threads]
,min(qs.[last_reserved_threads])			as [min_last_reserved_threads]
,max(qs.[last_reserved_threads])			as [max_last_reserved_threads]
,min(qs.[min_reserved_threads])			as [min_reserved_threads]
,max(qs.[max_reserved_threads])			as [max_reserved_threads]
,max(qs.[total_used_threads])				as [total_used_threads]
,min(qs.[last_used_threads])				as [min_last_used_threads]
,max(qs.[last_used_threads])				as [max_last_used_threads]
,min(qs.[min_used_threads])				as [min_used_threads]
,max(qs.[max_used_threads])				as [max_used_threads]
from tbl_res_rec_g as t
inner join sys.dm_exec_query_stats as qs with(readuncommitted) on t.[plan_handle]=qs.[plan_handle] 
and t.[sql_handle]=qs.[sql_handle] 
and t.[start_time]=cast(qs.[last_execution_time] as date)
group by qs.[plan_handle]
,qs.[sql_handle]
--,qs.[last_execution_time]
)
select t.[session_id] --Сессия
,t.[blocking_session_id] --Сессия, которая явно блокирует сессию [session_id]
,t.[request_id] --Идентификатор запроса. Уникален в контексте сеанса
,t.[start_time] --Метка времени поступления запроса
,DateDiff(second, t.[start_time], GetDate()) as [date_diffSec] --Сколько в сек прошло времени от момента поступления запроса
,t.[status] --Состояние запроса
,t.[status_session] --Состояние сессии
,t.[command] --Тип выполняемой в данный момент команды
, COALESCE(
CAST(NULLIF(t.[total_elapsed_time] / 1000, 0) as BIGINT)
,CASE WHEN (t.[status_session] <> 'running' and isnull(t.[status], '')  <> 'running') 
THEN  DATEDIFF(ss,0,getdate() - nullif(t.[last_request_end_time], '1900-01-01T00:00:00.000'))
END
) as [total_time, sec] --Время всей работы запроса в сек
, CAST(NULLIF((CAST(t.[total_elapsed_time] as BIGINT) - CAST(t.[wait_time] AS BIGINT)) / 1000, 0 ) as bigint) as [work_time, sec] --Время работы запроса в сек без учета времени ожиданий
, CASE WHEN (t.[status_session] <> 'running' AND ISNULL(t.[status],'') <> 'running') 
THEN  DATEDIFF(ss,0,getdate() - nullif(t.[last_request_end_time], '1900-01-01T00:00:00.000'))
END as [sleep_time, sec] --Время сна в сек
, NULLIF( CAST((t.[logical_reads] + t.[writes]) * 8 / 1024 as numeric(38,2)), 0) as [IO, MB] --операций чтения и записи в МБ
, CASE  t.transaction_isolation_level
WHEN 0 THEN 'Unspecified'
WHEN 1 THEN 'ReadUncommited'
WHEN 2 THEN 'ReadCommited'
WHEN 3 THEN 'Repetable'
WHEN 4 THEN 'Serializable'
WHEN 5 THEN 'Snapshot'
END as [transaction_isolation_level_desc] --уровень изоляции транзакции (расшифровка)
,t.[percent_complete] --Процент завершения работы для следующих команд
,t.[DBName] --БД
,t.[object] --Объект
, SUBSTRING(
t.[TSQL]
, t.[statement_start_offset]/2+1
,	(
CASE WHEN ((t.[statement_start_offset]<0) OR (t.[statement_end_offset]<0))
THEN DATALENGTH (t.[TSQL])
ELSE t.[statement_end_offset]
END
- t.[statement_start_offset]
)/2 +1
) as [CURRENT_REQUEST] --Текущий выполняемый запрос в пакете
,t.[TSQL] --Запрос всего пакета
,t.[QueryPlan] --План всего пакета
,t.[wait_type] --Если запрос в настоящий момент блокирован, в столбце содержится тип ожидания (sys.dm_os_wait_stats)
,t.[login_time] --Время подключения сеанса
,t.[host_name] --Имя клиентской рабочей станции, указанное в сеансе. Для внутреннего сеанса это значение равно NULL
,t.[program_name] --Имя клиентской программы, которая инициировала сеанс. Для внутреннего сеанса это значение равно NULL
,cast(t.[wait_time]/1000 as decimal(18,3)) as [wait_timeSec] --Если запрос в настоящий момент блокирован, в столбце содержится продолжительность текущего ожидания (в секундах)
,t.[wait_time] --Если запрос в настоящий момент блокирован, в столбце содержится продолжительность текущего ожидания (в миллисекундах)
,t.[last_wait_type] --Если запрос был блокирован ранее, в столбце содержится тип последнего ожидания
,t.[wait_resource] --Если запрос в настоящий момент блокирован, в столбце указан ресурс, освобождения которого ожидает запрос
,t.[open_transaction_count] --Число транзакций, открытых для данного запроса
,t.[open_resultset_count] --Число результирующих наборов, открытых для данного запроса
,t.[transaction_id] --Идентификатор транзакции, в которой выполняется запрос
,t.[context_info] --Значение CONTEXT_INFO сеанса
,cast(t.[estimated_completion_time]/1000 as decimal(18,3)) as [estimated_completion_timeSec] --Только для внутреннего использования. Не допускает значение NULL
,t.[estimated_completion_time] --Только для внутреннего использования. Не допускает значение NULL
,cast(t.[cpu_time]/1000 as decimal(18,3)) as [cpu_timeSec] --Время ЦП (в секундах), затраченное на выполнение запроса
,t.[cpu_time] --Время ЦП (в миллисекундах), затраченное на выполнение запроса
,cast(t.[total_elapsed_time]/1000 as decimal(18,3)) as [total_elapsed_timeSec] --Общее время, истекшее с момента поступления запроса (в секундах)
,t.[total_elapsed_time] --Общее время, истекшее с момента поступления запроса (в миллисекундах)
,t.[scheduler_id] --Идентификатор планировщика, который планирует данный запрос
,t.[task_address] --Адрес блока памяти, выделенного для задачи, связанной с этим запросом
,t.[reads] --Число операций чтения, выполненных данным запросом
,t.[writes] --Число операций записи, выполненных данным запросом
,t.[logical_reads] --Число логических операций чтения, выполненных данным запросом
,t.[text_size] --Установка параметра TEXTSIZE для данного запроса
,t.[language] --Установка языка для данного запроса
,t.[date_format] --Установка параметра DATEFORMAT для данного запроса
,t.[date_first] --Установка параметра DATEFIRST для данного запроса
,t.[quoted_identifier] --1 = Параметр QUOTED_IDENTIFIER для запроса включен (ON). В противном случае — 0
,t.[arithabort] --1 = Параметр ARITHABORT для запроса включен (ON). В противном случае — 0
,t.[ansi_null_dflt_on] --1 = Параметр ANSI_NULL_DFLT_ON для запроса включен (ON). В противном случае — 0
,t.[ansi_defaults] --1 = Параметр ANSI_DEFAULTS для запроса включен (ON). В противном случае — 0
,t.[ansi_warnings] --1 = Параметр ANSI_WARNINGS для запроса включен (ON). В противном случае — 0
,t.[ansi_padding] --1 = Параметр ANSI_PADDING для запроса включен (ON)
,t.[ansi_nulls] --1 = Параметр ANSI_NULLS для запроса включен (ON). В противном случае — 0
,t.[concat_null_yields_null] --1 = Параметр CONCAT_NULL_YIELDS_NULL для запроса включен (ON). В противном случае — 0
,t.[transaction_isolation_level] --Уровень изоляции, с которым создана транзакция для данного запроса
,cast(t.[lock_timeout]/1000 as decimal(18,3)) as [lock_timeoutSec] --Время ожидания блокировки для данного запроса (в секундах)
,t.[lock_timeout] --Время ожидания блокировки для данного запроса (в миллисекундах)
,t.[deadlock_priority] --Значение параметра DEADLOCK_PRIORITY для данного запроса
,t.[row_count] --Число строк, возвращенных клиенту по данному запросу
,t.[prev_error] --Последняя ошибка, происшедшая при выполнении запроса
,t.[nest_level] --Текущий уровень вложенности кода, выполняемого для данного запроса
,t.[granted_query_memory] --Число страниц, выделенных для выполнения поступившего запроса (1 страница-это примерно 8 КБ)
,t.[executing_managed_code] --Указывает, выполняет ли данный запрос в настоящее время код объекта среды CLR (например, процедуры, типа или триггера).
--Этот флаг установлен в течение всего времени, когда объект среды CLR находится в стеке, даже когда из среды вызывается код Transact-SQL
,t.[group_id]	--Идентификатор группы рабочей нагрузки, которой принадлежит этот запрос
,t.[query_hash] --Двоичное хэш-значение рассчитывается для запроса и используется для идентификации запросов с аналогичной логикой.
--Можно использовать хэш запроса для определения использования статистических ресурсов для запросов, которые отличаются только своими литеральными значениями
,t.[query_plan_hash] --Двоичное хэш-значение рассчитывается для плана выполнения запроса и используется для идентификации аналогичных планов выполнения запросов.
--Можно использовать хэш плана запроса для нахождения совокупной стоимости запросов со схожими планами выполнения
,t.[most_recent_session_id] --Представляет собой идентификатор сеанса самого последнего запроса, связанного с данным соединением
,t.[connect_time] --Отметка времени установления соединения
,t.[net_transport] --Содержит описание физического транспортного протокола, используемого данным соединением
,t.[protocol_type] --Указывает тип протокола передачи полезных данных
,t.[protocol_version] --Версия протокола доступа к данным, связанного с данным соединением
,t.[endpoint_id] --Идентификатор, описывающий тип соединения. Этот идентификатор endpoint_id может использоваться для запросов к представлению sys.endpoints
,t.[encrypt_option] --Логическое значение, указывающее, разрешено ли шифрование для данного соединения
,t.[auth_scheme] --Указывает схему проверки подлинности (SQL Server или Windows), используемую с данным соединением
,t.[node_affinity] --Идентифицирует узел памяти, которому соответствует данное соединение
,t.[num_reads] --Число пакетов, принятых посредством данного соединения
,t.[num_writes] --Число пакетов, переданных посредством данного соединения
,t.[last_read] --Отметка времени о последнем полученном пакете данных
,t.[last_write] --Отметка времени о последнем отправленном пакете данных
,t.[net_packet_size] --Размер сетевого пакета, используемый для передачи данных
,t.[client_net_address] --Сетевой адрес удаленного клиента
,t.[client_tcp_port] --Номер порта на клиентском компьютере, который используется при осуществлении соединения
,t.[local_net_address] --IP-адрес сервера, с которым установлено данное соединение. Доступен только для соединений, которые в качестве транспорта данных используют протокол TCP
,t.[local_tcp_port] --TCP-порт сервера, если соединение использует протокол TCP
,t.[parent_connection_id] --Идентифицирует первичное соединение, используемое в сеансе MARS
,t.[most_recent_sql_handle] --Дескриптор последнего запроса SQL, выполненного с помощью данного соединения. Постоянно проводится синхронизация между столбцом most_recent_sql_handle и столбцом most_recent_session_id
,t.[host_process_id] --Идентификатор процесса клиентской программы, которая инициировала сеанс. Для внутреннего сеанса это значение равно NULL
,t.[client_version] --Версия TDS-протокола интерфейса, который используется клиентом для подключения к серверу. Для внутреннего сеанса это значение равно NULL
,t.[client_interface_name] --Имя библиотеки или драйвер, используемый клиентом для обмена данными с сервером. Для внутреннего сеанса это значение равно NULL
,t.[security_id] --Идентификатор безопасности Microsoft Windows, связанный с именем входа
,t.[login_name] --SQL Server Имя входа, под которой выполняется текущий сеанс.
--Чтобы узнать первоначальное имя входа, с помощью которого был создан сеанс, см. параметр original_login_name.
--Может быть SQL Server проверка подлинности имени входа или имени пользователя домена, прошедшего проверку подлинности Windows
,t.[nt_domain] --Домен Windows для клиента, если во время сеанса применяется проверка подлинности Windows или доверительное соединение.
--Для внутренних сеансов и пользователей, не принадлежащих к домену, это значение равно NULL
,t.[nt_user_name] --Имя пользователя Windows для клиента, если во время сеанса используется проверка подлинности Windows или доверительное соединение.
--Для внутренних сеансов и пользователей, не принадлежащих к домену, это значение равно NULL
,t.[memory_usage] --Количество 8-килобайтовых страниц памяти, используемых данным сеансом
,t.[total_scheduled_time] --Общее время, назначенное данному сеансу (включая его вложенные запросы) для исполнения, в миллисекундах
,t.[last_request_start_time] --Время, когда начался последний запрос данного сеанса. Это может быть запрос, выполняющийся в данный момент
,t.[last_request_end_time] --Время завершения последнего запроса в рамках данного сеанса
,t.[is_user_process] --0, если сеанс является системным. В противном случае значение равно 1
,t.[original_security_id] --Microsoft Идентификатор безопасности Windows, связанный с параметром original_login_name
,t.[original_login_name] --SQL Server Имя входа, которую использует клиент создал данный сеанс.
--Это может быть имя входа SQL Server, прошедшее проверку подлинности, имя пользователя домена Windows, 
--прошедшее проверку подлинности, или пользователь автономной базы данных.
--Обратите внимание, что после первоначального соединения для сеанса может быть выполнено много неявных или явных переключений контекста.
--Например если EXECUTE AS используется
,t.[last_successful_logon] --Время последнего успешного входа в систему для имени original_login_name до запуска текущего сеанса
,t.[last_unsuccessful_logon] --Время последнего неуспешного входа в систему для имени original_login_name до запуска текущего сеанса
,t.[unsuccessful_logons] --Число неуспешных попыток входа в систему для имени original_login_name между временем last_successful_logon и временем login_time
,t.[authenticating_database_id] --Идентификатор базы данных, выполняющей проверку подлинности участника.
--Для имен входа это значение будет равно 0.
--Для пользователей автономной базы данных это значение будет содержать идентификатор автономной базы данных
,t.[sql_handle] --Хэш-карта текста SQL-запроса
,t.[statement_start_offset] --Количество символов в выполняемом в настоящий момент пакете или хранимой процедуре, в которой запущена текущая инструкция.
--Может применяться вместе с функциями динамического управления sql_handle, statement_end_offset и sys.dm_exec_sql_text
--для извлечения исполняемой в настоящий момент инструкции по запросу
,t.[statement_end_offset] --Количество символов в выполняемом в настоящий момент пакете или хранимой процедуре, в которой завершилась текущая инструкция.
--Может применяться вместе с функциями динамического управления sql_handle, statement_end_offset и sys.dm_exec_sql_text
--для извлечения исполняемой в настоящий момент инструкции по запросу
,t.[plan_handle] --Хэш-карта плана выполнения SQL
,t.[database_id] --Идентификатор базы данных, к которой выполняется запрос
,t.[user_id] --Идентификатор пользователя, отправившего данный запрос
,t.[connection_id] --Идентификатор соединения, по которому поступил запрос
,t.[is_blocking_other_session] --1-сессия явно блокирует другие сессии, 0-сессия явно не блокирует другие сессии
,coalesce(t.[dop], mg.[dop]) as [dop] --Степень параллелизма запроса
,mg.[request_time] --Дата и время обращения запроса за предоставлением памяти
,mg.[grant_time] --Дата и время, когда запросу была предоставлена память. Возвращает значение NULL, если память еще не была предоставлена
,mg.[requested_memory_kb] --Общий объем запрошенной памяти в килобайтах
,mg.[granted_memory_kb] --Общий объем фактически предоставленной памяти в килобайтах.
--Может быть значение NULL, если память еще не была предоставлена.
--Обычно это значение должно быть одинаковым с requested_memory_kb.
--Для создания индекса сервер может разрешить дополнительное предоставление по требованию памяти,
--объем которой выходит за рамки изначально предоставленной памяти
,mg.[required_memory_kb] --Минимальный объем памяти в килобайтах (КБ), необходимый для выполнения данного запроса.
--Значение requested_memory_kb равно этому объему или больше его
,mg.[used_memory_kb] --Используемый в данный момент объем физической памяти (в килобайтах)
,mg.[max_used_memory_kb] --Максимальный объем используемой до данного момента физической памяти в килобайтах
,mg.[query_cost] --Ожидаемая стоимость запроса
,mg.[timeout_sec] --Время ожидания данного запроса в секундах до отказа от обращения за предоставлением памяти
,mg.[resource_semaphore_id] --Неуникальный идентификатор семафора ресурса, которого ожидает данный запрос
,mg.[queue_id] --Идентификатор ожидающей очереди, в которой данный запрос ожидает предоставления памяти.
--Значение NULL, если память уже предоставлена
,mg.[wait_order] --Последовательный порядок ожидающих запросов в указанной очереди queue_id.
--Это значение может изменяться для заданного запроса, если другие запросы отказываются от предоставления памяти или получают ее.
--Значение NULL, если память уже предоставлена
,mg.[is_next_candidate] --Является следующим кандидатом на предоставление памяти (1 = да, 0 = нет, NULL = память уже предоставлена)
,mg.[wait_time_ms] --Время ожидания в миллисекундах. Значение NULL, если память уже предоставлена
,mg.[pool_id] --Идентификатор пула ресурсов, к которому принадлежит данная группа рабочей нагрузки
,mg.[is_small] --Значение 1 означает, что для данной операции предоставления памяти используется малый семафор ресурса.
--Значение 0 означает использование обычного семафора
,mg.[ideal_memory_kb] --Объем, в килобайтах (КБ), предоставленной памяти, необходимый для размещения всех данных в физической памяти.
--Основывается на оценке количества элементов
,mg.[reserved_worker_count] --Число рабочих процессов, зарезервированной с помощью параллельных запросов, а также число основных рабочих процессов, используемых всеми запросами
,mg.[used_worker_count] --Число рабочих процессов, используемых параллельных запросов
,mg.[max_used_worker_count] --???
,mg.[reserved_node_bitmap] --???
,pl.[bucketid] --Идентификатор сегмента хэша, в который кэшируется запись.
--Значение указывает диапазон от 0 до значения размера хэш-таблицы для типа кэша.
--Для кэшей SQL Plans и Object Plans размер хэш-таблицы может достигать 10007 на 32-разрядных версиях систем и 40009 — на 64-разрядных.
--Для кэша Bound Trees размер хэш-таблицы может достигать 1009 на 32-разрядных версиях систем и 4001 на 64-разрядных.
--Для кэша расширенных хранимых процедур размер хэш-таблицы может достигать 127 на 32-разрядных и 64-разрядных версиях систем
,pl.[refcounts] --Число объектов кэша, ссылающихся на данный объект кэша.
--Значение refcounts для записи должно быть не меньше 1, чтобы размещаться в кэше
,pl.[usecounts] --Количество повторений поиска объекта кэша.
--Остается без увеличения, если параметризованные запросы обнаруживают план в кэше.
--Может быть увеличен несколько раз при использовании инструкции showplan
,pl.[size_in_bytes] --Число байтов, занимаемых объектом кэша
,pl.[memory_object_address] --Адрес памяти кэшированной записи.
--Это значение можно использовать с представлением sys.dm_os_memory_objects,
--чтобы проанализировать распределение памяти кэшированного плана, 
--и с представлением sys.dm_os_memory_cache_entries для определения затрат на кэширование записи
,pl.[cacheobjtype] --Тип объекта в кэше. Значение может быть одним из следующих
,pl.[objtype] --Тип объекта. Значение может быть одним из следующих
,pl.[parent_plan_handle] --Родительский план
--данные из sys.dm_exec_query_stats брались за сутки, в которых была пара (запрос, план)
,qs.[creation_time] --Время компиляции плана
,qs.[execution_count] --Количество выполнений плана с момента последней компиляции
,qs.[total_worker_time] --Общее время ЦП, затраченное на выполнение плана с момента компиляции, в микросекундах (но с точностью до миллисекунды)
,qs.[min_last_worker_time] --Минимальное время ЦП, затраченное на последнее выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[max_last_worker_time] --Максимальное время ЦП, затраченное на последнее выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[min_worker_time] --Минимальное время ЦП, когда-либо затраченное на выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[max_worker_time] --Максимальное время ЦП, когда-либо затраченное на выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[total_physical_reads] --Общее количество операций физического считывания при выполнении плана с момента его компиляции.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_last_physical_reads] --Минимальное количество операций физического считывания за время последнего выполнения плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_last_physical_reads] --Максимальное количество операций физического считывания за время последнего выполнения плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_physical_reads] --Минимальное количество операций физического считывания за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_physical_reads] --Максимальное количество операций физического считывания за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[total_logical_writes] --Общее количество операций логической записи при выполнении плана с момента его компиляции.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_last_logical_writes] --Минимальное количество страниц в буферном пуле, загрязненных во время последнего выполнения плана.
--Если страница уже является «грязной» (т. е. измененной), операции записи не учитываются.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_last_logical_writes] --Максимальное количество страниц в буферном пуле, загрязненных во время последнего выполнения плана.
--Если страница уже является «грязной» (т. е. измененной), операции записи не учитываются.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_logical_writes] --Минимальное количество операций логической записи за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_logical_writes] --Максимальное количество операций логической записи за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[total_logical_reads] --Общее количество операций логического считывания при выполнении плана с момента его компиляции.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_last_logical_reads] --Минимальное количество операций логического считывания за время последнего выполнения плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_last_logical_reads] --Максимальное количество операций логического считывания за время последнего выполнения плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[min_logical_reads]	   --Минимальное количество операций логического считывания за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[max_logical_reads]	--Максимальное количество операций логического считывания за одно выполнение плана.
--Значение всегда равно 0 при запросе оптимизированной для памяти таблицы
,qs.[total_clr_time]	--Время, в микросекундах (но с точностью до миллисекунды),
--внутри Microsoft .NET Framework общеязыковая среда выполнения (CLR) объекты при выполнении плана с момента его компиляции.
--Объекты среды CLR могут быть хранимыми процедурами, функциями, триггерами, типами и статистическими выражениями
,qs.[min_last_clr_time] --Минимальное время, в микросекундах (но с точностью до миллисекунды),
--затраченное внутри .NET Framework объекты среды CLR во время последнего выполнения плана.
--Объекты среды CLR могут быть хранимыми процедурами, функциями, триггерами, типами и статистическими выражениями
,qs.[max_last_clr_time] --Максимальное время, в микросекундах (но с точностью до миллисекунды),
--затраченное внутри .NET Framework объекты среды CLR во время последнего выполнения плана.
--Объекты среды CLR могут быть хранимыми процедурами, функциями, триггерами, типами и статистическими выражениями
,qs.[min_clr_time] --Минимальное время, когда-либо затраченное на выполнение плана внутри объектов .NET Framework среды CLR,
--в микросекундах (но с точностью до миллисекунды).
--Объекты среды CLR могут быть хранимыми процедурами, функциями, триггерами, типами и статистическими выражениями
,qs.[max_clr_time] --Максимальное время, когда-либо затраченное на выполнение плана внутри среды CLR .NET Framework,
--в микросекундах (но с точностью до миллисекунды).
--Объекты среды CLR могут быть хранимыми процедурами, функциями, триггерами, типами и статистическими выражениями
--,qs.[total_elapsed_time] --Общее время, затраченное на выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[min_last_elapsed_time] --Минимальное время, затраченное на последнее выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[max_last_elapsed_time] --Максимальное время, затраченное на последнее выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[min_elapsed_time] --Минимальное время, когда-либо затраченное на выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[max_elapsed_time] --Максимальное время, когда-либо затраченное на выполнение плана, в микросекундах (но с точностью до миллисекунды)
,qs.[total_rows] --Общее число строк, возвращаемых запросом. Не может иметь значение null.
--Значение всегда равно 0, если скомпилированная в собственном коде хранимая процедура запрашивает оптимизированную для памяти таблицу
,qs.[min_last_rows] --Минимальное число строк, возвращенных последним выполнением запроса. Не может иметь значение null.
--Значение всегда равно 0, если скомпилированная в собственном коде хранимая процедура запрашивает оптимизированную для памяти таблицу
,qs.[max_last_rows] --Максимальное число строк, возвращенных последним выполнением запроса. Не может иметь значение null.
--Значение всегда равно 0, если скомпилированная в собственном коде хранимая процедура запрашивает оптимизированную для памяти таблицу
,qs.[min_rows] --Минимальное количество строк, когда-либо возвращенных по запросу во время выполнения один
--Значение всегда равно 0, если скомпилированная в собственном коде хранимая процедура запрашивает оптимизированную для памяти таблицу
,qs.[max_rows] --Максимальное число строк, когда-либо возвращенных по запросу во время выполнения один
--Значение всегда равно 0, если скомпилированная в собственном коде хранимая процедура запрашивает оптимизированную для памяти таблицу
,qs.[total_dop] --Общую сумму по степени параллелизма плана используется с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_dop] --Минимальная степень параллелизма, если время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_dop] --Максимальная степень параллелизма, если время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_dop] --Минимальная степень параллелизма этот план когда-либо используется во время одного выполнения.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_dop] --Максимальная степень параллелизма этот план когда-либо используется во время одного выполнения.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[total_grant_kb] --Общий объем зарезервированной памяти в КБ предоставить этот план, полученных с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_grant_kb] --Минимальный объем зарезервированной памяти предоставляет в КБ, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_grant_kb] --Максимальный объем зарезервированной памяти предоставляет в КБ, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_grant_kb] --Минимальный объем зарезервированной памяти в КБ предоставить никогда не получено в ходе одного выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_grant_kb] --Максимальный объем зарезервированной памяти в КБ предоставить никогда не получено в ходе одного выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[total_used_grant_kb] --Общий объем зарезервированной памяти в КБ предоставить этот план, используемый с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_used_grant_kb] --Минимальная сумма предоставления используемой памяти в КБ, если время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_used_grant_kb] --Максимальная сумма предоставления используемой памяти в КБ, если время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_used_grant_kb] --Минимальный объем используемой памяти в КБ предоставить никогда не используется при выполнении одного плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_used_grant_kb] --Максимальный объем используемой памяти в КБ предоставить никогда не используется при выполнении одного плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[total_ideal_grant_kb] --Общий объем идеальный память в КБ, оценка плана с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_ideal_grant_kb] --Минимальный объем памяти, идеальным предоставляет в КБ, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_ideal_grant_kb] --Максимальный объем памяти, идеальным предоставляет в КБ, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_ideal_grant_kb] --Минимальный объем памяти идеальный предоставления в этот план когда-либо оценка во время выполнения один КБ.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_ideal_grant_kb] --Максимальный объем памяти идеальный предоставления в этот план когда-либо оценка во время выполнения один КБ.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[total_reserved_threads] --Общая сумма по зарезервированным параллельного потоков этот план когда-либо использовавшегося с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_reserved_threads] --Минимальное число зарезервированных параллельных потоков, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_reserved_threads] --Максимальное число зарезервированных параллельных потоков, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_reserved_threads] --Минимальное число зарезервированных параллельного потоков, когда-либо использовать при выполнении одного плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_reserved_threads] --Максимальное число зарезервированных параллельного потоков никогда не используется при выполнении одного плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[total_used_threads] --Общая сумма используется параллельных потоков этот план когда-либо использовавшегося с момента его компиляции.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_last_used_threads] --Минимальное число используемых параллельных потоков, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_last_used_threads] --Максимальное число используемых параллельных потоков, когда время последнего выполнения плана.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[min_used_threads] --Минимальное число используемых параллельных потоков, при выполнении одного плана использовали.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
,qs.[max_used_threads] --Максимальное число используемых параллельных потоков, при выполнении одного плана использовали.
--Он всегда будет равно 0 для запроса к таблице, оптимизированной для памяти
from tbl_res_rec as t
left outer join sys.dm_exec_query_memory_grants as mg on t.[plan_handle]=mg.[plan_handle] and t.[sql_handle]=mg.[sql_handle]
left outer join sys.dm_exec_cached_plans as pl on t.[plan_handle]=pl.[plan_handle]
left outer join tbl_rec_stat_g as qs on t.[plan_handle]=qs.[plan_handle] and t.[sql_handle]=qs.[sql_handle] --and qs.[last_execution_time]=cast(t.[start_time] as date);

Podsjetit ću vas i da prema prikupljenim statistikama možete dobiti najteže upite:
Šifra

/*
creation_time - Время, когда запрос был скомпилирован. Поскольку при старте сервера кэш пустой, данное время всегда больше либо равно моменту запуска сервиса. Если время, указанное в этом столбце позже, чем предполагаемое (первое использование процедуры), это говорит о том, что запрос по тем или иным причинам был рекомпилирован.
last_execution_time - Момент фактического последнего выполнения запроса.
execution_count - Сколько раз запрос был выполнен с момента компиляции
Количество выполнений позволяет найти ошибки в алгоритмах - часто в наиболее выполняемых запросах оказываются те, которые находятся внутри каких-либо циклов однако могут быть выполнены перед самим циклом один раз. Например, получение каких-либо параметров из базы данных, не меняющихся внутри цикла.
CPU - Суммарное время использования процессора в миллисекундах. Если запрос обрабатывается параллельно, то это время может превысить общее время выполнения запроса, поскольку суммируется время использования запроса каждым ядром. Во время использования процессора включается только фактическая нагрузка на ядра, в нее не входят ожидания каких-либо ресурсов.
Очевидно, что данный показатель позволяет выявлять запросы, наиболее сильно загружающие процессор.
AvgCPUTime - Средняя загрузка процессора на один запрос. 
TotDuration - Общее время выполнения запроса, в миллисекундах.
Данный параметр может быть использован для поиска тех запросов, которые, независимо от причины выполняются "наиболее долго". Если общее время выполнения запроса существенно ниже времени CPU (с поправкой на параллелизм) - это говорит о том, что при выполнения запроса были ожидания каких-либо ресурсов. В большинстве случаев это связано с дисковой активностью или блокировками, но также это может быть сетевой интерфейс или другой ресурс. 
Полный список типов ожиданий можно посмотреть в описании представления sys.dm_os_wait_stats.
AvgDur - Среднее время выполнения запроса в миллисекундах.
Reads - Общее количество чтений.
Это пожалуй лучший агрегатный показатель, позволяющий выявить наиболее нагружающие сервер запросы.
Логическое чтение - это разовое обращение к странице данных, физические чтения не учитываются.
В рамках выполнения одного запроса, могут происходить неоднократные обращения к одной и той же странице.
Чем больше обращений к страницам, тем больше требуется дисковых чтений, памяти и, если речь идет о повторных обращениях, большее время требуется удерживать страницы в памяти.
Writes - Общее количество изменений страниц данных.
Характеризует то, как запрос "нагружает" дисковую систему операциями записи.
Следует помнить, что этот показатель может быть больше 0 не только у тех запросов, которые явно меняют данные, но также и у тех, которые сохраняют промежуточные данные в tempdb.
AggIO - Общее количество логических операций ввода-вывода (суммарно)
Как правило, количество логических чтений на порядки превышает количество операций записи, поэтому этот показатель сам по себе для анализа применим в редких случаях.
AvgIO - Среднее количество логических дисковых операций на одно выполнение запроса.
Значение данного показателя можно анализировать из следующих соображений:
Одна страница данных - это 8192 байта. Можно получить среднее количество байт данных, "обрабатываемых" данным запросом. Если этот объем превышает реальное количество данных, которые обрабатывает запрос (суммарный объем данных в используемых в запросе таблицах), это говорит о том, что был выбран заведомо плохой план выполнения и требуется заняться оптимизацией данного запроса.
Я встречал случай, когда один запрос делал количество обращений, эквивалентных объему в 5Тб, при этом общий объем данных в это БД был 300Гб, а объем данных в таблицах, задействованных в запросе не превышал 10Гб.
В общем можно описать одну причину такого поведения сервера - вместо использования индекса сервер предпочитает сканировать таблицу или наоборот.
Если объем логических чтений в разы превосходит общие объем данных, то это вызвано повторным обращениям к одним и тем же страницам данных. Помимо того, что в одном запросе таблица может быть использована несколько раз, к одним и тем же страницам сервер обращается например в случаях, когда используется индекс и по результатам поиска по нему, найденные некоторые строки данных лежат на одной и той же странице. Конечно, в таком случае предпочтительным могло бы быть сканирование таблицы - в этом случае сервер обращался бы к каждой странице данных только один раз. Однако этому часто мешают... попытки оптимизации запросов, когда разработчик явно указывает, какой индекс или тип соединения должен быть использован.
Обратный случай - вместо использования индекса было выбрано сканирование таблицы. Как правило, это связано с тем, что статистика устарела и требуется её обновление. Однако и в этом случае причиной неудачно выбранного плана вполне могут оказаться подсказки оптимизатору запросов.
query_text - Текст самого запроса
database_name - Имя базы данных, в находится объект, содержащий запрос. NULL для системных процедур
object_name - Имя объекта (процедуры или функции), содержащего запрос.
*/
with s as (
select  creation_time,
last_execution_time,
execution_count,
total_worker_time/1000 as CPU,
convert(money, (total_worker_time))/(execution_count*1000)as [AvgCPUTime],
qs.total_elapsed_time/1000 as TotDuration,
convert(money, (qs.total_elapsed_time))/(execution_count*1000)as [AvgDur],
total_logical_reads as [Reads],
total_logical_writes as [Writes],
total_logical_reads+total_logical_writes as [AggIO],
convert(money, (total_logical_reads+total_logical_writes)/(execution_count + 0.0))as [AvgIO],
[sql_handle],
plan_handle,
statement_start_offset,
statement_end_offset
from sys.dm_exec_query_stats as qs with(readuncommitted)
where convert(money, (qs.total_elapsed_time))/(execution_count*1000)>=100 --выполнялся запрос не менее 100 мс
)
select
s.creation_time,
s.last_execution_time,
s.execution_count,
s.CPU,
s.[AvgCPUTime],
s.TotDuration,
s.[AvgDur],
s.[Reads],
s.[Writes],
s.[AggIO],
s.[AvgIO],
--st.text as query_text,
case 
when sql_handle IS NULL then ' '
else(substring(st.text,(s.statement_start_offset+2)/2,(
case
when s.statement_end_offset =-1 then len(convert(nvarchar(MAX),st.text))*2      
else s.statement_end_offset    
end - s.statement_start_offset)/2  ))
end as query_text,
db_name(st.dbid) as database_name,
object_schema_name(st.objectid, st.dbid)+'.'+object_name(st.objectid, st.dbid) as [object_name],
sp.[query_plan],
s.[sql_handle],
s.plan_handle
from s
cross apply sys.dm_exec_sql_text(s.[sql_handle]) as st
cross apply sys.dm_exec_query_plan(s.[plan_handle]) as sp

Također možete pisati za MySQL. Da biste to učinili, morate instalirati mysql-konektor-net a zatim napišite kod ovako:
Šifra za zahtjeve na čekanju

#Задаем переменные для подключение к MySQL и само подключение
[string]$sMySQLUserName = 'UserName'
[string]$sMySQLPW = 'UserPassword'
[string]$sMySQLDB = 'db'
[string]$sMySQLHost = 'IP-address'
[void][System.Reflection.Assembly]::LoadWithPartialName("MySql.Data");
[string]$sConnectionString = "server="+$sMySQLHost+";port=3306;uid=" + $sMySQLUserName + ";pwd="+"'" + $sMySQLPW +"'"+ ";database="+$sMySQLDB;
#Open a Database connection
$oConnection = New-Object MySql.Data.MySqlClient.MySqlConnection($sConnectionString)
$Error.Clear()
try
{
$oConnection.Open()
}
catch
{
write-warning ("Could not open a connection to Database $sMySQLDB on Host $sMySQLHost. Error: "+$Error[0].ToString())
}
#The first query
# Get an instance of all objects need for a SELECT query. The Command object
$oMYSQLCommand = New-Object MySql.Data.MySqlClient.MySqlCommand;
# DataAdapter Object
$oMYSQLDataAdapter = New-Object MySql.Data.MySqlClient.MySqlDataAdapter;
# And the DataSet Object
$oMYSQLDataSet = New-Object System.Data.DataSet;
# Assign the established MySQL connection
$oMYSQLCommand.Connection=$oConnection;
# Define a SELECT query
$oMYSQLCommand.CommandText='query';
$oMYSQLDataAdapter.SelectCommand=$oMYSQLCommand;
# Execute the query
$count=$oMYSQLDataAdapter.Fill($oMYSQLDataSet, "data");
$result = $oMYSQLDataSet.Tables[0].Rows[0]["Count"];
write-host $result;

Rezultirati

Ovaj članak je pogledao primjer brojača performansi (podatkovnih stavki) u Zabbixu. Ovaj pristup omogućuje administratorima da budu obaviješteni o različitim problemima u stvarnom vremenu ili nakon određenog vremena. Dakle, ovaj pristup nam omogućuje da minimiziramo pojavu kritičnog problema u budućnosti i zaustavimo rad DBMS-a i poslužitelja, što zauzvrat štiti proizvodnju od zaustavljanja radnih procesa.
Prethodni članak: Rutinski rad s bazom podataka informacijskog sustava 24×7 u MS SQL Serveru

Izvori:

» Zabbix 3.4
» Brojači performansi
» Performance Center za Azure SQL bazu podataka i SQL Server Database Engine
» SQL životni stil
» SQLSkills
» TechNet Microsoft
» Analiza korištenja memorije
» Analiza izvedbe
» SQL dokumentacija
» Napomene o sustavu Windows

Izvor: www.habr.com

Dodajte komentar