Seguindo os passos do Industrial Ninja: como um PLC foi hackeado no Positive Hack Days 9

Seguindo os passos do Industrial Ninja: como um PLC foi hackeado no Positive Hack Days 9

No último PHDays 9 realizamos uma competição para hackear uma usina de bombeamento de gás - competição Ninja Industrial. No local havia três estandes com diferentes parâmetros de segurança (Sem Segurança, Baixa Segurança, Alta Segurança), emulando o mesmo processo industrial: ar sob pressão era bombeado para dentro de um balão (e depois liberado).

Apesar dos diferentes parâmetros de segurança, a composição de hardware dos estandes foi a mesma: Siemens Simatic PLC série S7-300; botão de deflação de emergência e dispositivo de medição de pressão (conectado às entradas digitais (DI) do CLP); válvulas que atuam para enchimento e esvaziamento de ar (conectadas às saídas digitais do CLP (DO)) - veja figura abaixo.

Seguindo os passos do Industrial Ninja: como um PLC foi hackeado no Positive Hack Days 9

O PLC, dependendo das leituras de pressão e de acordo com o seu programa, tomou a decisão de esvaziar ou encher a bola (abriu e fechou as válvulas correspondentes). Porém, todos os estandes possuíam modo de controle manual, o que possibilitava controlar os estados das válvulas sem quaisquer restrições.

Os estandes diferiam na complexidade de habilitar este modo: no estande desprotegido era mais fácil fazer isso, e no estande de Alta Segurança era correspondentemente mais difícil.

Cinco dos seis problemas foram resolvidos em dois dias; O primeiro colocado conquistou 233 pontos (passou uma semana se preparando para a competição). Três vencedores: I colocado - a1exdandy, II - Rubikoid, III - Ze.

Porém, durante o PHDays, nenhum dos participantes conseguiu superar as três arquibancadas, por isso decidimos fazer uma competição online e publicamos a tarefa mais difícil no início de junho. Os participantes tiveram que completar a tarefa dentro de um mês, encontrar a bandeira e descrever a solução detalhadamente e de forma interessante.

Abaixo do corte publicamos uma análise da melhor solução para a tarefa dentre as enviadas ao longo do mês, foi encontrada por Alexey Kovrizhnykh (a1exdandy) da empresa Digital Security, que conquistou o XNUMXº lugar na competição durante o PHDays. Abaixo apresentamos seu texto com nossos comentários.

Análise inicial

Portanto, a tarefa continha um arquivo com os seguintes arquivos:

  • block_upload_traffic.pcapng
  • DB100.bin
  • dicas.txt

O arquivo hints.txt contém as informações e dicas necessárias para resolver a tarefa. Aqui está o seu conteúdo:

  1. Petrovich me disse ontem que você pode carregar blocos do PlcSim no Step7.
  2. No estande foi utilizado o CLP Siemens Simatic série S7-300.
  3. PlcSim é um emulador de PLC que permite executar e depurar programas para PLCs Siemens S7.

O arquivo DB100.bin parece conter o bloco de dados DB100 PLC: 00000000: 0100 0102 6e02 0401 0206 0100 0101 0102 ....n......... 00000010: 1002 0501 0202 2002 0501 0206 0100 0102 00000020 . . ................ 0102: 7702 0401 0206 0100 0103 0102 0a02 00000030 u............... 0501: 0202 1602 0501 0206 0100 0104 0102 00000040............7502. . 0401 : 0206 0100 0105 0102 0a02 0501 00000050 0202 ................ 1602: 0501 0206 0100 0106a 0102 3402 4 00000060 .........0401. .... 0206a0100: 0107 0102b 2602 0501 0202 00000070 4 02 ......".....F... 0501b0206: 0100 0108 0102c 3302 0401 3 00000080 0206 ........0100. .... .... .... 0109e0102: 0 02 0501 0202 1602 00000090 0501 0206 ........#...... 0100f010: 0102 3702 0401 0206 7 000000 0 0100 ....010. ..... . .....&. 0102: 2202 0501 0202c4602 0501 000000 0 ....L......

Como o nome sugere, o arquivo block_upload_traffic.pcapng contém um dump do tráfego de upload de bloco para o PLC.

É importante notar que esse tráfego no local da competição durante a conferência foi um pouco mais difícil de obter. Para isso foi necessário entender o script do arquivo de projeto do TeslaSCADA2. A partir dele foi possível entender onde estava localizado o dump criptografado usando RC4 e qual chave precisava ser usada para descriptografá-lo. Despejos de blocos de dados no local podem ser obtidos usando o cliente de protocolo S7. Para isso utilizei o cliente demo do pacote Snap7.

Extraindo blocos de processamento de sinal de um despejo de tráfego

Observando o conteúdo do dump, você pode entender que ele contém os blocos de processamento de sinal OB1, FC1, FC2 e FC3:

Seguindo os passos do Industrial Ninja: como um PLC foi hackeado no Positive Hack Days 9

Esses blocos devem ser removidos. Isto pode ser feito, por exemplo, com o seguinte script, tendo previamente convertido o tráfego do formato pcapng para pcap:

#!/usr/bin/env python2

import struct
from scapy.all import *

packets = rdpcap('block_upload_traffic.pcap')
s7_hdr_struct = '>BBHHHHBB'
s7_hdr_sz = struct.calcsize(s7_hdr_struct)
tpkt_cotp_sz = 7
names = iter(['OB1.bin', 'FC1.bin', 'FC2.bin', 'FC3.bin'])
buf = ''

for packet in packets:
    if packet.getlayer(IP).src == '10.0.102.11':
        tpkt_cotp_s7 = str(packet.getlayer(TCP).payload)
        if len(tpkt_cotp_s7) < tpkt_cotp_sz + s7_hdr_sz:
            continue
        s7 = tpkt_cotp_s7[tpkt_cotp_sz:]
        s7_hdr = s7[:s7_hdr_sz]
        param_sz = struct.unpack(s7_hdr_struct, s7_hdr)[4]
        s7_param = s7[12:12+param_sz]
        s7_data = s7[12+param_sz:]
        if s7_param in ('x1ex00', 'x1ex01'):  # upload
            buf += s7_data[4:]
        elif s7_param == 'x1f':
            with open(next(names), 'wb') as f:
                f.write(buf)
            buf = ''

Depois de examinar os blocos resultantes, você notará que eles sempre começam com os bytes 70 70 (pp). Agora você precisa aprender como analisá-los. A dica de atribuição sugere que você precisa usar o PlcSim para isso.

Obtendo instruções legíveis por humanos a partir de blocos

Primeiro, vamos tentar programar o S7-PlcSim carregando vários blocos com instruções repetidas (= Q 0.0) usando o software Simatic Manager e salvando o PLC obtido no emulador no arquivo example.plc. Observando o conteúdo do arquivo, você pode determinar facilmente o início dos blocos baixados pela assinatura 70 70, que descobrimos anteriormente. Antes dos blocos, aparentemente, o tamanho do bloco é escrito como um valor little-endian de 4 bytes.

Seguindo os passos do Industrial Ninja: como um PLC foi hackeado no Positive Hack Days 9

Após recebermos informações sobre a estrutura dos arquivos do PLC, surgiu o seguinte plano de ação para leitura dos programas do PLC S7:

  1. Usando o Simatic Manager, criamos uma estrutura de blocos no S7-PlcSim semelhante à que recebemos do dump. Os tamanhos dos blocos devem corresponder (isso é conseguido preenchendo os blocos com o número necessário de instruções) e seus identificadores (OB1, FC1, FC2, FC3).
  2. Salve o PLC em um arquivo.
  3. Substituímos o conteúdo dos blocos no arquivo resultante pelos blocos do despejo de tráfego. O início dos blocos é determinado pela assinatura.
  4. Carregamos o arquivo resultante no S7-PlcSim e observamos o conteúdo dos blocos no Simatic Manager.

Os blocos podem ser substituídos, por exemplo, pelo seguinte código:

with open('original.plc', 'rb') as f:
    plc = f.read()
blocks = []
for fname in ['OB1.bin', 'FC1.bin', 'FC2.bin', 'FC3.bin']:
    with open(fname, 'rb') as f:
        blocks.append(f.read())

i = plc.find(b'pp')
for block in blocks:
    plc = plc[:i] + block + plc[i+len(block):]
    i = plc.find(b'pp', i + 1)

with open('target.plc', 'wb') as f:
    f.write(plc)

Alexey seguiu um caminho talvez mais difícil, mas ainda assim correto. Assumimos que os participantes usariam o programa NetToPlcSim para que o PlcSim pudesse se comunicar pela rede, fazer upload de blocos para o PlcSim via Snap7 e, em seguida, baixar esses blocos como um projeto do PlcSim usando o ambiente de desenvolvimento.

Ao abrir o arquivo resultante no S7-PlcSim, você pode ler os blocos sobrescritos usando o Simatic Manager. As principais funções de controle do dispositivo estão registradas no bloco FC1. Digno de nota é a variável #TEMP0, que quando ligada parece definir o controle do PLC para o modo manual com base nos valores de memória de bits M2.2 e M2.3. O valor #TEMP0 é definido pela função FC3.

Seguindo os passos do Industrial Ninja: como um PLC foi hackeado no Positive Hack Days 9

Para resolver o problema, é necessário analisar a função FC3 e entender o que precisa ser feito para que ela retorne uma função lógica.

Os blocos de processamento de sinais do PLC no estande de Baixa Segurança do local da competição foram dispostos de forma semelhante, mas para definir o valor da variável #TEMP0 bastou escrever a linha my ninja way no bloco DB1. A verificação do valor em um bloco era simples e não exigia conhecimento profundo da linguagem de programação do bloco. Obviamente, no nível de Alta Segurança, conseguir o controle manual será muito mais difícil e é necessário entender os meandros da linguagem STL (uma das formas de programar o PLC S7).

Bloco reverso FC3

Conteúdo do bloco FC3 na representação STL:

      L     B#16#0
      T     #TEMP13
      T     #TEMP15
      L     P#DBX 0.0
      T     #TEMP4
      CLR   
      =     #TEMP14
M015: L     #TEMP4
      LAR1  
      OPN   DB   100
      L     DBLG
      TAR1  
      <=D   
      JC    M016
      L     DW#16#0
      T     #TEMP0
      L     #TEMP6
      L     W#16#0
      <>I   
      JC    M00d
      L     P#DBX 0.0
      LAR1  
M00d: L     B [AR1,P#0.0]
      T     #TEMP5
      L     W#16#1
      ==I   
      JC    M007
      L     #TEMP5
      L     W#16#2
      ==I   
      JC    M008
      L     #TEMP5
      L     W#16#3
      ==I   
      JC    M00f
      L     #TEMP5
      L     W#16#4
      ==I   
      JC    M00e
      L     #TEMP5
      L     W#16#5
      ==I   
      JC    M011
      L     #TEMP5
      L     W#16#6
      ==I   
      JC    M012
      JU    M010
M007: +AR1  P#1.0
      L     P#DBX 0.0
      LAR2  
      L     B [AR1,P#0.0]
      L     C#8
      *I    
      +AR2  
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      JL    M003
      JU    M001
      JU    M002
      JU    M004
M003: JU    M005
M001: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #TEMP0
      JU    M006
M002: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #TEMP1
      JU    M006
M004: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #TEMP2
      JU    M006
M00f: +AR1  P#1.0
      L     B [AR1,P#0.0]
      L     C#8
      *I    
      T     #TEMP11
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9
      TAR1  #TEMP4
      OPN   DB   101
      L     P#DBX 0.0
      LAR1  
      L     #TEMP11
      +AR1  
      LAR2  #TEMP9
      L     B [AR2,P#0.0]
      T     B [AR1,P#0.0]
      L     #TEMP4
      LAR1  
      JU    M006
M008: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP3
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      JL    M009
      JU    M00b
      JU    M00a
      JU    M00c
M009: JU    M005
M00b: L     #TEMP3
      T     #TEMP0
      JU    M006
M00a: L     #TEMP3
      T     #TEMP1
      JU    M006
M00c: L     #TEMP3
      T     #TEMP2
      JU    M006
M00e: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10
      TAR1  #TEMP4
      LAR1  #TEMP9
      LAR2  #TEMP10
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      AW    
      INVI  
      T     #TEMP12
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      OW    
      L     #TEMP12
      AW    
      T     B [AR1,P#0.0]
      L     DW#16#0
      T     #TEMP0
      L     MB   101
      T     #TEMP1
      L     MB   102
      T     #TEMP2
      L     #TEMP4
      LAR1  
      JU    M006
M011: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10
      TAR1  #TEMP4
      LAR1  #TEMP9
      LAR2  #TEMP10
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      -I    
      T     B [AR1,P#0.0]
      L     DW#16#0
      T     #TEMP0
      L     MB   101
      T     #TEMP1
      L     MB   102
      T     #TEMP2
      L     #TEMP4
      LAR1  
      JU    M006
M012: L     #TEMP15
      INC   1
      T     #TEMP15
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10
      TAR1  #TEMP4
      LAR1  #TEMP9
      LAR2  #TEMP10
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      ==I   
      JCN   M013
      JU    M014
M013: L     P#DBX 0.0
      LAR1  
      T     #TEMP4
      L     B#16#0
      T     #TEMP6
      JU    M006
M014: L     #TEMP4
      LAR1  
      L     #TEMP13
      L     L#1
      +I    
      T     #TEMP13
      JU    M006
M006: L     #TEMP0
      T     MB   100
      L     #TEMP1
      T     MB   101
      L     #TEMP2
      T     MB   102
      +AR1  P#1.0
      L     #TEMP6
      +     1
      T     #TEMP6
      JU    M005
M010: L     P#DBX 0.0
      LAR1  
      L     0
      T     #TEMP6
      TAR1  #TEMP4
M005: TAR1  #TEMP4
      CLR   
      =     #TEMP16
      L     #TEMP13
      L     L#20
      ==I   
      S     #TEMP16
      L     #TEMP15
      ==I   
      A     #TEMP16
      JC    M017
      L     #TEMP13
      L     L#20
      <I    
      S     #TEMP16
      L     #TEMP15
      ==I   
      A     #TEMP16
      JC    M018
      JU    M019
M017: SET   
      =     #TEMP14
      JU    M016
M018: CLR   
      =     #TEMP14
      JU    M016
M019: CLR   
      O     #TEMP14
      =     #RET_VAL
      JU    M015
M016: CLR   
      O     #TEMP14
      =     #RET_VAL

O código é bastante extenso e pode parecer complicado para alguém não familiarizado com STL. Não faz sentido analisar cada instrução no âmbito deste artigo; instruções detalhadas e capacidades da linguagem STL podem ser encontradas no manual correspondente: Lista de declarações (STL) para programação S7-300 e S7-400. Aqui apresentarei o mesmo código após o processamento - renomeando os rótulos e variáveis ​​e adicionando comentários descrevendo o algoritmo de operação e algumas construções da linguagem STL. Deixe-me observar imediatamente que o bloco em questão contém uma máquina virtual que executa algum bytecode localizado no bloco DB100, cujo conteúdo conhecemos. As instruções da máquina virtual consistem em 1 byte de código operacional e bytes de argumentos, um byte para cada argumento. Todas as instruções consideradas possuem dois argumentos, designei seus valores nos comentários como X e Y.

Código após processamento]

# Инициализация различных переменных
      L     B#16#0
      T     #CHECK_N        # Счетчик успешно пройденных проверок
      T     #COUNTER_N      # Счетчик общего количества проверок
      L     P#DBX 0.0
      T     #POINTER        # Указатель на текущую инструкцию
      CLR   
      =     #PRE_RET_VAL

# Основной цикл работы интерпретатора байт-кода
LOOP: L     #POINTER
      LAR1  
      OPN   DB   100
      L     DBLG
      TAR1  
      <=D                   # Проверка выхода указателя за пределы программы
      JC    FINISH
      L     DW#16#0
      T     #REG0
      L     #TEMP6
      L     W#16#0
      <>I   
      JC    M00d
      L     P#DBX 0.0
      LAR1  

# Конструкция switch - case для обработки различных опкодов
M00d: L     B [AR1,P#0.0]
      T     #OPCODE
      L     W#16#1
      ==I   
      JC    OPCODE_1
      L     #OPCODE
      L     W#16#2
      ==I   
      JC    OPCODE_2
      L     #OPCODE
      L     W#16#3
      ==I   
      JC    OPCODE_3
      L     #OPCODE
      L     W#16#4
      ==I   
      JC    OPCODE_4
      L     #OPCODE
      L     W#16#5
      ==I   
      JC    OPCODE_5
      L     #OPCODE
      L     W#16#6
      ==I   
      JC    OPCODE_6
      JU    OPCODE_OTHER

# Обработчик опкода 01: загрузка значения из DB101[X] в регистр Y
# OP01(X, Y): REG[Y] = DB101[X]
OPCODE_1: +AR1  P#1.0
      L     P#DBX 0.0
      LAR2  
      L     B [AR1,P#0.0]   # Загрузка аргумента X (индекс в DB101)
      L     C#8
      *I    
      +AR2  
      +AR1  P#1.0
      L     B [AR1,P#0.0]   # Загрузка аргумента Y (индекс регистра)
      JL    M003            # Аналог switch - case на основе значения Y
      JU    M001            # для выбора необходимого регистра для записи.
      JU    M002            # Подобные конструкции используются и в других
      JU    M004            # операциях ниже для аналогичных целей
M003: JU    LOOPEND
M001: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #REG0           # Запись значения DB101[X] в REG[0]
      JU    PRE_LOOPEND
M002: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #REG1           # Запись значения DB101[X] в REG[1]
      JU    PRE_LOOPEND
M004: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #REG2           # Запись значения DB101[X] в REG[2]
      JU    PRE_LOOPEND

# Обработчик опкода 02: загрузка значения X в регистр Y
# OP02(X, Y): REG[Y] = X
OPCODE_2: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP3
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      JL    M009
      JU    M00b
      JU    M00a
      JU    M00c
M009: JU    LOOPEND
M00b: L     #TEMP3
      T     #REG0
      JU    PRE_LOOPEND
M00a: L     #TEMP3
      T     #REG1
      JU    PRE_LOOPEND
M00c: L     #TEMP3
      T     #REG2
      JU    PRE_LOOPEND

# Опкод 03 не используется в программе, поэтому пропустим его
...

# Обработчик опкода 04: сравнение регистров X и Y
# OP04(X, Y): REG[0] = 0; REG[X] = (REG[X] == REG[Y])
OPCODE_4: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7          # первый аргумент - X
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9          # REG[X]
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10         # REG[Y]
      TAR1  #POINTER
      LAR1  #TEMP9          # REG[X]
      LAR2  #TEMP10         # REG[Y]
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      AW    
      INVI  
      T     #TEMP12         # ~(REG[Y] & REG[X])
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      OW    
      L     #TEMP12
      AW                    # (~(REG[Y] & REG[X])) & (REG[Y] | REG[X]) - аналог проверки на равенство
      T     B [AR1,P#0.0]
      L     DW#16#0
      T     #REG0
      L     MB   101
      T     #REG1
      L     MB   102
      T     #REG2
      L     #POINTER
      LAR1  
      JU    PRE_LOOPEND

# Обработчик опкода 05: вычитание регистра Y из X
# OP05(X, Y): REG[0] = 0; REG[X] = REG[X] - REG[Y]
OPCODE_5: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9          # REG[X]
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10         # REG[Y]
      TAR1  #POINTER
      LAR1  #TEMP9
      LAR2  #TEMP10
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      -I                    # ACCU1 = ACCU2 - ACCU1, REG[X] - REG[Y]
      T     B [AR1,P#0.0]
      L     DW#16#0
      T     #REG0
      L     MB   101
      T     #REG1
      L     MB   102
      T     #REG2
      L     #POINTER
      LAR1  
      JU    PRE_LOOPEND

# Обработчик опкода 06: инкремент #CHECK_N при равенстве регистров X и Y
# OP06(X, Y): #CHECK_N += (1 if REG[X] == REG[Y] else 0)
OPCODE_6: L     #COUNTER_N
      INC   1
      T     #COUNTER_N
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7          #  REG[X]     
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9          #  REG[X]  
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10         # REG[Y]
      TAR1  #POINTER
      LAR1  #TEMP9          # REG[Y]
      LAR2  #TEMP10         # REG[X]
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      ==I   
      JCN   M013
      JU    M014
M013: L     P#DBX 0.0
      LAR1  
      T     #POINTER
      L     B#16#0
      T     #TEMP6
      JU    PRE_LOOPEND
M014: L     #POINTER
      LAR1  
# Инкремент значения #CHECK_N
      L     #CHECK_N
      L     L#1
      +I    
      T     #CHECK_N
      JU    PRE_LOOPEND

PRE_LOOPEND: L     #REG0
      T     MB   100
      L     #REG1
      T     MB   101
      L     #REG2
      T     MB   102
      +AR1  P#1.0
      L     #TEMP6
      +     1
      T     #TEMP6
      JU    LOOPEND

OPCODE_OTHER: L     P#DBX 0.0
      LAR1  
      L     0
      T     #TEMP6
      TAR1  #POINTER

LOOPEND: TAR1  #POINTER
      CLR   
      =     #TEMP16
      L     #CHECK_N
      L     L#20
      ==I   
      S     #TEMP16
      L     #COUNTER_N
      ==I   
      A     #TEMP16
# Все проверки пройдены, если #CHECK_N == #COUNTER_N == 20
      JC    GOOD
      L     #CHECK_N
      L     L#20
      <I    
      S     #TEMP16
      L     #COUNTER_N
      ==I   
      A     #TEMP16
      JC    FAIL
      JU    M019
GOOD: SET   
      =     #PRE_RET_VAL
      JU    FINISH
FAIL: CLR   
      =     #PRE_RET_VAL
      JU    FINISH
M019: CLR   
      O     #PRE_RET_VAL
      =     #RET_VAL
      JU    LOOP
FINISH: CLR   
      O     #PRE_RET_VAL
      =     #RET_VAL

Tendo uma ideia das instruções da máquina virtual, vamos escrever um pequeno desmontador para analisar o bytecode no bloco DB100:

import string
alph = string.ascii_letters + string.digits

with open('DB100.bin', 'rb') as f:
    m = f.read()

pc = 0

while pc < len(m):
    op = m[pc]
    if op == 1:
        print('R{} = DB101[{}]'.format(m[pc + 2], m[pc + 1]))
        pc += 3
    elif op == 2:
        c = chr(m[pc + 1])
        c = c if c in alph else '?'
        print('R{} = {:02x} ({})'.format(m[pc + 2], m[pc + 1], c))
        pc += 3
    elif op == 4:
        print('R0 = 0; R{} = (R{} == R{})'.format(
            m[pc + 1], m[pc + 1], m[pc + 2]))
        pc += 3
    elif op == 5:
        print('R0 = 0; R{} = R{} - R{}'.format(
            m[pc + 1], m[pc + 1], m[pc + 2]))
        pc += 3
    elif op == 6:
        print('CHECK (R{} == R{})n'.format(
            m[pc + 1], m[pc + 2]))
        pc += 3
    else:
        print('unk opcode {}'.format(op))
        break

Como resultado, obtemos o seguinte código de máquina virtual:

Código da máquina virtual

R1 = DB101[0]
R2 = 6e (n)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[1]
R2 = 10 (?)
R0 = 0; R1 = R1 - R2
R2 = 20 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[2]
R2 = 77 (w)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[3]
R2 = 0a (?)
R0 = 0; R1 = R1 - R2
R2 = 16 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[4]
R2 = 75 (u)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[5]
R2 = 0a (?)
R0 = 0; R1 = R1 - R2
R2 = 16 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[6]
R2 = 34 (4)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[7]
R2 = 26 (?)
R0 = 0; R1 = R1 - R2
R2 = 4c (L)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[8]
R2 = 33 (3)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[9]
R2 = 0a (?)
R0 = 0; R1 = R1 - R2
R2 = 16 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[10]
R2 = 37 (7)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[11]
R2 = 22 (?)
R0 = 0; R1 = R1 - R2
R2 = 46 (F)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[12]
R2 = 33 (3)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[13]
R2 = 0a (?)
R0 = 0; R1 = R1 - R2
R2 = 16 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[14]
R2 = 6d (m)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[15]
R2 = 11 (?)
R0 = 0; R1 = R1 - R2
R2 = 23 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[16]
R2 = 35 (5)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[17]
R2 = 12 (?)
R0 = 0; R1 = R1 - R2
R2 = 25 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[18]
R2 = 33 (3)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[19]
R2 = 26 (?)
R0 = 0; R1 = R1 - R2
R2 = 4c (L)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

Como você pode ver, este programa simplesmente verifica cada caractere do DB101 quanto à igualdade com um determinado valor. A linha final para passar em todas as verificações é: n0w u 4r3 7h3 m4573r. Se esta linha for colocada no bloco DB101, o controle manual do PLC será ativado e será possível explodir ou esvaziar o balão.


Isso é tudo! Alexey demonstrou um alto nível de conhecimento digno de um ninja industrial :) Enviamos prêmios memoráveis ​​ao vencedor. Muito obrigado a todos os participantes!

Fonte: habr.com

Adicionar um comentário