追随工业忍者的脚步:PLC 如何在 Positive Hack Days 9 中被黑客入侵

追随工业忍者的脚步:PLC 如何在 Positive Hack Days 9 中被黑客入侵

在最后的 PHDays 9 上,我们举办了一场破解天然气泵站的竞赛 - 竞赛 工业忍者。 现场有三个具有不同安全参数的展位(无安全性、低安全性、高安全性),模拟相同的工业流程:加压空气被泵入气球(然后释放)。

尽管安全参数不同,但展位的硬件构成是相同的:西门子Simatic PLC S7-300系列; 紧急放气按钮和压力测量装置(连接到PLC数字输入(DI)); 用于充气和放气的阀门(连接到 PLC (DO) 的数字输出) - 参见下图。

追随工业忍者的脚步:PLC 如何在 Positive Hack Days 9 中被黑客入侵

PLC根据压力读数并按照其程序做出对球进行放气或充气的决定(打开和关闭相应的阀门)。 不过,所有站台都有手动控制模式,可以不受任何限制地控制阀门的状态。

各个展位启用此模式的复杂性有所不同:在无保护的展位上最容易做到这一点,而在高安全性展位上则相应地更困难。

两天内解决了六个问题中的五个; 第一名的选手获得了233分(他花了一周的时间准备比赛)。 三位获胜者:第一名 - a1exdandy,第二名 - Rubikoid,第三名 - Ze。

然而,在 PHDays 期间,没有一个参赛者能够克服所有三个看台,因此我们决定进行在线比赛,并在 XNUMX 月初公布了最困难的任务。 参与者必须在一个月内完成任务,找到旗帜,并以有趣的方式详细描述解决方案。

在剪辑下方,我们发布了对本月发送的任务最佳解决方案的分析,该分析是由数字安全公司的 Alexey Kovrizhnykh (a1exdandy) 发现的,他在 PHDays 竞赛中获得了第一名。 下面我们将介绍其文本和我们的评论。

初步分析

因此,该任务包含包含以下文件的存档:

  • block_upload_traffic.pcapng
  • DB100.bin
  • 提示.txt

hins.txt 文件包含解决任务所需的信息和提示。 以下是其内容:

  1. Petrovich 昨天告诉我,您可以将 PlcSim 中的块加载到 Step7 中。
  2. 展台采用了西门子Simatic S7-300系列PLC。
  3. PlcSim 是一个 PLC 仿真器,允许您运行和调试西门子 S7 PLC 的程序。

DB100.bin 文件似乎包含 DB100 PLC 数据块: 00000000: 0100 0102 6e02 0401 0206 0100 0101 0102 ....n......... 00000010: 1002 0501 0202 2002 0501 0206 0100 0102第00000020章............. 0102:7702 0401 0206 0100 0103 0102 0 02a00000030 ............ 0501:0202 1602 0501 0206 0100 0104 0102 00000040 ...................... 7502: 0401 0206 0100 0105 0102 0 02a0501 00000050 ....................... 0202: 1602 0501 0206 0100 0106 0102 3402 4......00000060. 0401: 0206 0100 0107 0102 2602 0501 0202 00000070 ....... 4: 02c0501 0206 0100 0108 0102 3302 0401 3 L.........00000080. .. 0206 : 0100 0109 0102 0 02a0501 0202 1602 00000090 ........ 0501: 0206 0100 010 0102a 3702 0401 0206 7 ........000000. .... 0a0100: 010 0102b 2202 0501 0202 4602 0501 000000 ……".....F... 0b0206: 0100 010 0102c 3302 0401 0206 0100 3 ........000000. .... .. 0c010: 0102d 0 02a0501 0202 1602 0501 0206 000000 ........ 0d0100: 010 0102e 6 02d0401 0206 0100 010 000000f ......m. .... .... 0e0102: 1102 0501 0202 2302 0501 0206 0100 000000 ........#...... 0f0110: 0102 3502 0401 0206 0100 0111 0102 5 ....00000100. ..... ..... 1202: 0501 0202 2502 0501 0206 0100 0112 00000110 ........%......... 0102: 3302 0401 0206 0100 0113 0102 2602 3 ..00000120. ..... .....&. 0501: 0202 4 02c0501 0206 0100 XNUMX ....L......

顾名思义,block_upload_traffic.pcapng 文件包含到 PLC 的块上传流量的转储。

值得注意的是,这次大会期间比赛现场的流量转储有点难获取。 为此,有必要了解 TeslaSCADA2 项目文件中的脚本。 从中可以了解使用 RC4 加密的转储位于何处以及需要使用什么密钥来解密它。 现场数据块的转储可以使用S7协议客户端获得。 为此,我使用了 Snap7 包中的演示客户端。

从流量转储中提取信号处理块

查看转储的内容,可以了解到它包含信号处理块OB1、FC1、FC2和FC3:

追随工业忍者的脚步:PLC 如何在 Positive Hack Days 9 中被黑客入侵

这些块必须被移除。 例如,可以使用以下脚本来完成此操作,之前已将流量从 pcapng 格式转换为 pcap:

#!/usr/bin/env python2

import struct
from scapy.all import *

packets = rdpcap('block_upload_traffic.pcap')
s7_hdr_struct = '>BBHHHHBB'
s7_hdr_sz = struct.calcsize(s7_hdr_struct)
tpkt_cotp_sz = 7
names = iter(['OB1.bin', 'FC1.bin', 'FC2.bin', 'FC3.bin'])
buf = ''

for packet in packets:
    if packet.getlayer(IP).src == '10.0.102.11':
        tpkt_cotp_s7 = str(packet.getlayer(TCP).payload)
        if len(tpkt_cotp_s7) < tpkt_cotp_sz + s7_hdr_sz:
            continue
        s7 = tpkt_cotp_s7[tpkt_cotp_sz:]
        s7_hdr = s7[:s7_hdr_sz]
        param_sz = struct.unpack(s7_hdr_struct, s7_hdr)[4]
        s7_param = s7[12:12+param_sz]
        s7_data = s7[12+param_sz:]
        if s7_param in ('x1ex00', 'x1ex01'):  # upload
            buf += s7_data[4:]
        elif s7_param == 'x1f':
            with open(next(names), 'wb') as f:
                f.write(buf)
            buf = ''

检查生成的块后,您会注意到它们始终以字节 70 70 (pp) 开头。 现在您需要学习如何分析它们。 分配提示表明您需要为此使用 PlcSim。

从块中获取人类可读的指令

首先,我们尝试使用 Simatic Manager 软件将多个具有重复指令 (= Q 7) 的块加载到 S0.0-PlcSim 中,并将仿真器中获得的 PLC 保存到 example.plc 文件中。 通过查看文件的内容,您可以通过我们之前发现的签名 70 70 轻松确定下载块的开头。 显然,在块之前,块大小被写为 4 字节小端值。

追随工业忍者的脚步:PLC 如何在 Positive Hack Days 9 中被黑客入侵

当我们收到有关plc文件结构的信息后,出现了以下读取PLC S7程序的行动计划:

  1. 使用 Simatic Manager,我们在 S7-PlcSim 中创建一个类似于我们从转储中收到的块结构。 块大小必须匹配(这是通过用所需数量的指令填充块来实现的)及其标识符(OB1、FC1、FC2、FC3)。
  2. 将 PLC 保存到文件中。
  3. 我们将结果文件中的块内容替换为流量转储中的块。 块的开始由签名确定。
  4. 我们将生成的文件加载到 S7-PlcSim 中,并在 Simatic Manager 中查看块的内容。

例如,可以使用以下代码替换块:

with open('original.plc', 'rb') as f:
    plc = f.read()
blocks = []
for fname in ['OB1.bin', 'FC1.bin', 'FC2.bin', 'FC3.bin']:
    with open(fname, 'rb') as f:
        blocks.append(f.read())

i = plc.find(b'pp')
for block in blocks:
    plc = plc[:i] + block + plc[i+len(block):]
    i = plc.find(b'pp', i + 1)

with open('target.plc', 'wb') as f:
    f.write(plc)

阿列克谢走了一条也许更困难但仍然正确的道路。 我们假设参与者将使用 NetToPlcSim 程序,以便 PlcSim 可以通过网络进行通信,通过 Snap7 将块上传到 PlcSim,然后使用开发环境从 PlcSim 将这些块作为项目下载。

通过在 S7-PlcSim 中打开生成的文件,您可以使用 Simatic Manager 读取覆盖的块。 主要设备控制功能记录在块FC1中。 特别值得注意的是#TEMP0 变量,当打开该变量时,它似乎会根据 M2.2 和 M2.3 位内存值将 PLC 控制设置为手动模式。 #TEMP0 值由功能 FC3 设置。

追随工业忍者的脚步:PLC 如何在 Positive Hack Days 9 中被黑客入侵

要解决该问题,您需要分析 FC3 函数并了解需要做什么才能返回逻辑值。

比赛现场低安全看台的 PLC 信号处理块以类似的方式排列,但要设置 #TEMP0 变量的值,只需将我的忍者方式写入 DB1 块即可。 检查块中的值非常简单,不需要深入了解块编程语言。 显然,在高安全级别,实现手动控制会困难得多,有必要了解STL语言(S7 PLC编程方式之一)的复杂性。

反向块FC3

STL 表示形式的 FC3 块的内容:

      L     B#16#0
      T     #TEMP13
      T     #TEMP15
      L     P#DBX 0.0
      T     #TEMP4
      CLR   
      =     #TEMP14
M015: L     #TEMP4
      LAR1  
      OPN   DB   100
      L     DBLG
      TAR1  
      <=D   
      JC    M016
      L     DW#16#0
      T     #TEMP0
      L     #TEMP6
      L     W#16#0
      <>I   
      JC    M00d
      L     P#DBX 0.0
      LAR1  
M00d: L     B [AR1,P#0.0]
      T     #TEMP5
      L     W#16#1
      ==I   
      JC    M007
      L     #TEMP5
      L     W#16#2
      ==I   
      JC    M008
      L     #TEMP5
      L     W#16#3
      ==I   
      JC    M00f
      L     #TEMP5
      L     W#16#4
      ==I   
      JC    M00e
      L     #TEMP5
      L     W#16#5
      ==I   
      JC    M011
      L     #TEMP5
      L     W#16#6
      ==I   
      JC    M012
      JU    M010
M007: +AR1  P#1.0
      L     P#DBX 0.0
      LAR2  
      L     B [AR1,P#0.0]
      L     C#8
      *I    
      +AR2  
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      JL    M003
      JU    M001
      JU    M002
      JU    M004
M003: JU    M005
M001: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #TEMP0
      JU    M006
M002: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #TEMP1
      JU    M006
M004: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #TEMP2
      JU    M006
M00f: +AR1  P#1.0
      L     B [AR1,P#0.0]
      L     C#8
      *I    
      T     #TEMP11
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9
      TAR1  #TEMP4
      OPN   DB   101
      L     P#DBX 0.0
      LAR1  
      L     #TEMP11
      +AR1  
      LAR2  #TEMP9
      L     B [AR2,P#0.0]
      T     B [AR1,P#0.0]
      L     #TEMP4
      LAR1  
      JU    M006
M008: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP3
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      JL    M009
      JU    M00b
      JU    M00a
      JU    M00c
M009: JU    M005
M00b: L     #TEMP3
      T     #TEMP0
      JU    M006
M00a: L     #TEMP3
      T     #TEMP1
      JU    M006
M00c: L     #TEMP3
      T     #TEMP2
      JU    M006
M00e: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10
      TAR1  #TEMP4
      LAR1  #TEMP9
      LAR2  #TEMP10
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      AW    
      INVI  
      T     #TEMP12
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      OW    
      L     #TEMP12
      AW    
      T     B [AR1,P#0.0]
      L     DW#16#0
      T     #TEMP0
      L     MB   101
      T     #TEMP1
      L     MB   102
      T     #TEMP2
      L     #TEMP4
      LAR1  
      JU    M006
M011: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10
      TAR1  #TEMP4
      LAR1  #TEMP9
      LAR2  #TEMP10
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      -I    
      T     B [AR1,P#0.0]
      L     DW#16#0
      T     #TEMP0
      L     MB   101
      T     #TEMP1
      L     MB   102
      T     #TEMP2
      L     #TEMP4
      LAR1  
      JU    M006
M012: L     #TEMP15
      INC   1
      T     #TEMP15
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10
      TAR1  #TEMP4
      LAR1  #TEMP9
      LAR2  #TEMP10
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      ==I   
      JCN   M013
      JU    M014
M013: L     P#DBX 0.0
      LAR1  
      T     #TEMP4
      L     B#16#0
      T     #TEMP6
      JU    M006
M014: L     #TEMP4
      LAR1  
      L     #TEMP13
      L     L#1
      +I    
      T     #TEMP13
      JU    M006
M006: L     #TEMP0
      T     MB   100
      L     #TEMP1
      T     MB   101
      L     #TEMP2
      T     MB   102
      +AR1  P#1.0
      L     #TEMP6
      +     1
      T     #TEMP6
      JU    M005
M010: L     P#DBX 0.0
      LAR1  
      L     0
      T     #TEMP6
      TAR1  #TEMP4
M005: TAR1  #TEMP4
      CLR   
      =     #TEMP16
      L     #TEMP13
      L     L#20
      ==I   
      S     #TEMP16
      L     #TEMP15
      ==I   
      A     #TEMP16
      JC    M017
      L     #TEMP13
      L     L#20
      <I    
      S     #TEMP16
      L     #TEMP15
      ==I   
      A     #TEMP16
      JC    M018
      JU    M019
M017: SET   
      =     #TEMP14
      JU    M016
M018: CLR   
      =     #TEMP14
      JU    M016
M019: CLR   
      O     #TEMP14
      =     #RET_VAL
      JU    M015
M016: CLR   
      O     #TEMP14
      =     #RET_VAL

该代码相当冗长,对于不熟悉 STL 的人来说可能看起来很复杂。 在本文的框架内分析每条指令是没有意义的;STL语言的详细指令和功能可以在相应的手册中找到: S7-300 和 S7-400 编程的语句表 (STL)。 在这里,我将展示处理后的相同代码 - 重命名标签和变量并添加描述操作算法和一些 STL 语言结构的注释。 让我立即注意到,所讨论的块包含一个虚拟机,该虚拟机执行位于 DB100 块中的一些字节码,我们知道其内容。 虚拟机指令由 1 个字节的操作代码和字节的参数组成,每个参数一个字节。 所有考虑的指令都有两个参数;我在注释中将它们的值指定为 X 和 Y。

处理后的代码]

# Инициализация различных переменных
      L     B#16#0
      T     #CHECK_N        # Счетчик успешно пройденных проверок
      T     #COUNTER_N      # Счетчик общего количества проверок
      L     P#DBX 0.0
      T     #POINTER        # Указатель на текущую инструкцию
      CLR   
      =     #PRE_RET_VAL

# Основной цикл работы интерпретатора байт-кода
LOOP: L     #POINTER
      LAR1  
      OPN   DB   100
      L     DBLG
      TAR1  
      <=D                   # Проверка выхода указателя за пределы программы
      JC    FINISH
      L     DW#16#0
      T     #REG0
      L     #TEMP6
      L     W#16#0
      <>I   
      JC    M00d
      L     P#DBX 0.0
      LAR1  

# Конструкция switch - case для обработки различных опкодов
M00d: L     B [AR1,P#0.0]
      T     #OPCODE
      L     W#16#1
      ==I   
      JC    OPCODE_1
      L     #OPCODE
      L     W#16#2
      ==I   
      JC    OPCODE_2
      L     #OPCODE
      L     W#16#3
      ==I   
      JC    OPCODE_3
      L     #OPCODE
      L     W#16#4
      ==I   
      JC    OPCODE_4
      L     #OPCODE
      L     W#16#5
      ==I   
      JC    OPCODE_5
      L     #OPCODE
      L     W#16#6
      ==I   
      JC    OPCODE_6
      JU    OPCODE_OTHER

# Обработчик опкода 01: загрузка значения из DB101[X] в регистр Y
# OP01(X, Y): REG[Y] = DB101[X]
OPCODE_1: +AR1  P#1.0
      L     P#DBX 0.0
      LAR2  
      L     B [AR1,P#0.0]   # Загрузка аргумента X (индекс в DB101)
      L     C#8
      *I    
      +AR2  
      +AR1  P#1.0
      L     B [AR1,P#0.0]   # Загрузка аргумента Y (индекс регистра)
      JL    M003            # Аналог switch - case на основе значения Y
      JU    M001            # для выбора необходимого регистра для записи.
      JU    M002            # Подобные конструкции используются и в других
      JU    M004            # операциях ниже для аналогичных целей
M003: JU    LOOPEND
M001: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #REG0           # Запись значения DB101[X] в REG[0]
      JU    PRE_LOOPEND
M002: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #REG1           # Запись значения DB101[X] в REG[1]
      JU    PRE_LOOPEND
M004: OPN   DB   101
      L     B [AR2,P#0.0]
      T     #REG2           # Запись значения DB101[X] в REG[2]
      JU    PRE_LOOPEND

# Обработчик опкода 02: загрузка значения X в регистр Y
# OP02(X, Y): REG[Y] = X
OPCODE_2: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP3
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      JL    M009
      JU    M00b
      JU    M00a
      JU    M00c
M009: JU    LOOPEND
M00b: L     #TEMP3
      T     #REG0
      JU    PRE_LOOPEND
M00a: L     #TEMP3
      T     #REG1
      JU    PRE_LOOPEND
M00c: L     #TEMP3
      T     #REG2
      JU    PRE_LOOPEND

# Опкод 03 не используется в программе, поэтому пропустим его
...

# Обработчик опкода 04: сравнение регистров X и Y
# OP04(X, Y): REG[0] = 0; REG[X] = (REG[X] == REG[Y])
OPCODE_4: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7          # первый аргумент - X
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9          # REG[X]
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10         # REG[Y]
      TAR1  #POINTER
      LAR1  #TEMP9          # REG[X]
      LAR2  #TEMP10         # REG[Y]
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      AW    
      INVI  
      T     #TEMP12         # ~(REG[Y] & REG[X])
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      OW    
      L     #TEMP12
      AW                    # (~(REG[Y] & REG[X])) & (REG[Y] | REG[X]) - аналог проверки на равенство
      T     B [AR1,P#0.0]
      L     DW#16#0
      T     #REG0
      L     MB   101
      T     #REG1
      L     MB   102
      T     #REG2
      L     #POINTER
      LAR1  
      JU    PRE_LOOPEND

# Обработчик опкода 05: вычитание регистра Y из X
# OP05(X, Y): REG[0] = 0; REG[X] = REG[X] - REG[Y]
OPCODE_5: +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9          # REG[X]
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10         # REG[Y]
      TAR1  #POINTER
      LAR1  #TEMP9
      LAR2  #TEMP10
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      -I                    # ACCU1 = ACCU2 - ACCU1, REG[X] - REG[Y]
      T     B [AR1,P#0.0]
      L     DW#16#0
      T     #REG0
      L     MB   101
      T     #REG1
      L     MB   102
      T     #REG2
      L     #POINTER
      LAR1  
      JU    PRE_LOOPEND

# Обработчик опкода 06: инкремент #CHECK_N при равенстве регистров X и Y
# OP06(X, Y): #CHECK_N += (1 if REG[X] == REG[Y] else 0)
OPCODE_6: L     #COUNTER_N
      INC   1
      T     #COUNTER_N
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP7          #  REG[X]     
      L     P#M 100.0
      LAR2  
      L     #TEMP7
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP9          #  REG[X]  
      +AR1  P#1.0
      L     B [AR1,P#0.0]
      T     #TEMP8
      L     P#M 100.0
      LAR2  
      L     #TEMP8
      L     C#8
      *I    
      +AR2  
      TAR2  #TEMP10         # REG[Y]
      TAR1  #POINTER
      LAR1  #TEMP9          # REG[Y]
      LAR2  #TEMP10         # REG[X]
      L     B [AR1,P#0.0]
      L     B [AR2,P#0.0]
      ==I   
      JCN   M013
      JU    M014
M013: L     P#DBX 0.0
      LAR1  
      T     #POINTER
      L     B#16#0
      T     #TEMP6
      JU    PRE_LOOPEND
M014: L     #POINTER
      LAR1  
# Инкремент значения #CHECK_N
      L     #CHECK_N
      L     L#1
      +I    
      T     #CHECK_N
      JU    PRE_LOOPEND

PRE_LOOPEND: L     #REG0
      T     MB   100
      L     #REG1
      T     MB   101
      L     #REG2
      T     MB   102
      +AR1  P#1.0
      L     #TEMP6
      +     1
      T     #TEMP6
      JU    LOOPEND

OPCODE_OTHER: L     P#DBX 0.0
      LAR1  
      L     0
      T     #TEMP6
      TAR1  #POINTER

LOOPEND: TAR1  #POINTER
      CLR   
      =     #TEMP16
      L     #CHECK_N
      L     L#20
      ==I   
      S     #TEMP16
      L     #COUNTER_N
      ==I   
      A     #TEMP16
# Все проверки пройдены, если #CHECK_N == #COUNTER_N == 20
      JC    GOOD
      L     #CHECK_N
      L     L#20
      <I    
      S     #TEMP16
      L     #COUNTER_N
      ==I   
      A     #TEMP16
      JC    FAIL
      JU    M019
GOOD: SET   
      =     #PRE_RET_VAL
      JU    FINISH
FAIL: CLR   
      =     #PRE_RET_VAL
      JU    FINISH
M019: CLR   
      O     #PRE_RET_VAL
      =     #RET_VAL
      JU    LOOP
FINISH: CLR   
      O     #PRE_RET_VAL
      =     #RET_VAL

了解了虚拟机指令后,让我们编写一个小型反汇编器来解析 DB100 块中的字节码:

import string
alph = string.ascii_letters + string.digits

with open('DB100.bin', 'rb') as f:
    m = f.read()

pc = 0

while pc < len(m):
    op = m[pc]
    if op == 1:
        print('R{} = DB101[{}]'.format(m[pc + 2], m[pc + 1]))
        pc += 3
    elif op == 2:
        c = chr(m[pc + 1])
        c = c if c in alph else '?'
        print('R{} = {:02x} ({})'.format(m[pc + 2], m[pc + 1], c))
        pc += 3
    elif op == 4:
        print('R0 = 0; R{} = (R{} == R{})'.format(
            m[pc + 1], m[pc + 1], m[pc + 2]))
        pc += 3
    elif op == 5:
        print('R0 = 0; R{} = R{} - R{}'.format(
            m[pc + 1], m[pc + 1], m[pc + 2]))
        pc += 3
    elif op == 6:
        print('CHECK (R{} == R{})n'.format(
            m[pc + 1], m[pc + 2]))
        pc += 3
    else:
        print('unk opcode {}'.format(op))
        break

结果,我们得到如下虚拟机代码:

虚拟机代码

R1 = DB101[0]
R2 = 6e (n)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[1]
R2 = 10 (?)
R0 = 0; R1 = R1 - R2
R2 = 20 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[2]
R2 = 77 (w)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[3]
R2 = 0a (?)
R0 = 0; R1 = R1 - R2
R2 = 16 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[4]
R2 = 75 (u)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[5]
R2 = 0a (?)
R0 = 0; R1 = R1 - R2
R2 = 16 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[6]
R2 = 34 (4)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[7]
R2 = 26 (?)
R0 = 0; R1 = R1 - R2
R2 = 4c (L)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[8]
R2 = 33 (3)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[9]
R2 = 0a (?)
R0 = 0; R1 = R1 - R2
R2 = 16 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[10]
R2 = 37 (7)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[11]
R2 = 22 (?)
R0 = 0; R1 = R1 - R2
R2 = 46 (F)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[12]
R2 = 33 (3)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[13]
R2 = 0a (?)
R0 = 0; R1 = R1 - R2
R2 = 16 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[14]
R2 = 6d (m)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[15]
R2 = 11 (?)
R0 = 0; R1 = R1 - R2
R2 = 23 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[16]
R2 = 35 (5)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[17]
R2 = 12 (?)
R0 = 0; R1 = R1 - R2
R2 = 25 (?)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

R1 = DB101[18]
R2 = 33 (3)
R0 = 0; R1 = (R1 == R2)
CHECK (R1 == R0)

R1 = DB101[19]
R2 = 26 (?)
R0 = 0; R1 = R1 - R2
R2 = 4c (L)
R0 = 0; R1 = R1 - R2
CHECK (R1 == R0)

正如您所看到的,该程序只是检查 DB101 中的每个字符是否等于某个值。 通过所有检查的最后一行是:n0w u 4r3 7h3 m4573r。 如果这条线放置在块 DB101 中,则激活手动 PLC 控制,并且可以使气球爆炸或放气。


就这样! Alexey 展现出了工业忍者应有的高水平知识:) 我们为获胜者颁发了令人难忘的奖品。 非常感谢所有参与者!

来源: habr.com

添加评论