nRF52832 上有玻璃面板的迷你觸控開關

在今天的文章中,我想與大家分享一個新專案。 這次是玻璃面板的觸控開關。 該設備結構緊湊,尺寸為 42x42mm(標準玻璃面板尺寸為 80x80mm)。 這個設備的歷史開始於很久以前,大約一年前。

nRF52832 上有玻璃面板的迷你觸控開關

第一個選擇是 atmega328 微控制器,但最終都以 nRF52832 微控制器結束。

nRF52832 上有玻璃面板的迷你觸控開關

該設備的觸控部分運行在TTP223晶片上。 兩個感測器均由一個中斷服務。 由 CR2477 電池透過 TPS610981 晶片上的升壓轉換器供電 | 數據表.

nRF52832 上有玻璃面板的迷你觸控開關
nRF52832 上有玻璃面板的迷你觸控開關

此元件使用場效電晶體實現斷電電路。 按下按鈕後,微控制器本身會攔截電源控制,然後按鈕可以用於服務模式(在我的例子中,這是與其他裝置配對,關閉電源並重設為原廠設定)。

有 2 個 RGB LED 用於指示狀態和服務模式。 還添加了壓電發射器,以模擬觸摸觸控按鈕時的點擊聲和服務模式的聲音指示。 LED 和壓電發射器可以由使用者自行決定開啟和關閉。 這是透過智慧家庭控制器向技術感測器發送命令來完成的;用戶還可以透過智慧家庭控制器更改發送電池電量和訊號電平的間隔。 就我而言是 管家.

發送模式下的功耗為 7mA(250kbit,10ms),睡眠狀態下的功耗為 40μA,關閉狀態下的功耗小於 1μA(=升壓轉換器在「閒置」模式下的功耗)。 提供用於程式設計的 Rx、tx、swd 連接器。 使用間距為 2 的微型 3x1.27p 連接器。 專門製作了一個用於編程的適配器。

nRF52832 上有玻璃面板的迷你觸控開關

一如既往,設備的操作是基於協議 我的感測器。 此觸控開關計劃用於捲簾控制系統。 但一般來說,該應用程式僅受您的想像力的限制。 例如,我的兒子(7歲)已經訂購了3個開關版本:打開和關閉帶浴缸的廁所中的燈(它將安裝在離地板較低的位置),打開浴室中的燈。去廁所時要走長又暗的走廊,有浴缸,另一間作為床頭,以便迅速打開房間裡的燈,讓怪物逃跑。

nRF52832 上有玻璃面板的迷你觸控開關
nRF52832 上有玻璃面板的迷你觸控開關
nRF52832 上有玻璃面板的迷你觸控開關

該案例傳統上是在 SLA 印表機上列印的,設備是微型的,案例結果也很小,使用這種列印技術是有道理的。

看列印模型nRF52832 上有玻璃面板的迷你觸控開關
nRF52832 上有玻璃面板的迷你觸控開關
nRF52832 上有玻璃面板的迷你觸控開關

磁鐵黏在外殼和電池盒蓋上。

對該設備進行測試的影片:



對於那些想重複的人:

Arduino IDE 捲簾控制系統中開關的測試程式碼

Arduino接線

int8_t timer_status = 0;
boolean sens_flag1 = 0;
boolean sens_flag2 = 0;
boolean switch_a = 0;
boolean switch_b = 0;
uint16_t temp;
float vcc;
int battery;
int old_battery;
uint32_t oldmillis;
uint32_t newmillis;
uint32_t interrupt_time;
uint32_t SLEEP_TIME = 7000;
uint32_t SLEEP_TIME_W;
uint32_t SLEEP_TIME_W2;
int NrfRSSI;
uint16_t NrfRSSI2;
boolean wait_off;
//#define MY_DEBUG
#define MY_DISABLED_SERIAL
#define MY_RADIO_NRF5_ESB
#define MY_PASSIVE_NODE
#define MY_NODE_ID 120
#define MY_PARENT_NODE_ID 0
#define MY_PARENT_NODE_IS_STATIC
#define MY_TRANSPORT_UPLINK_CHECK_DISABLED
#define POWER_CHILD_ID 110
#define UP_POWER_SWITCH_ID 1
#define DOWN_POWER_SWITCH_ID 2
#define CHILD_ID_nRF52_RSSI_RX 3
#define BAT_COOF 0.0092957746478873
#define BAT_MIN 200
#define BAT_MAX 290
#include <MySensors.h>
MyMessage upMsg(UP_POWER_SWITCH_ID, V_STATUS);
MyMessage downMsg(DOWN_POWER_SWITCH_ID, V_STATUS);
MyMessage powerMsg(POWER_CHILD_ID, V_VAR1);
MyMessage msgRF52RssiReceiv(CHILD_ID_nRF52_RSSI_RX, V_VAR1);
void preHwInit() {
pinMode(31, OUTPUT); //power management pin
digitalWrite(31, HIGH);
delay(3000);
pinMode(3, INPUT); // on off mode button
pinMode(25, OUTPUT); // sens1 led
pinMode(26, OUTPUT); // sens1 led
pinMode(27, OUTPUT); // sens1 led
pinMode(6, OUTPUT); // sens21 led
pinMode(7, OUTPUT); // sens2 led
pinMode(8, OUTPUT); // sens2 led
pinMode(28, OUTPUT); // bizzer
pinMode(2, INPUT); // common interrupt for touch sensors
pinMode(9, INPUT); // touch sensors1
pinMode(10, INPUT); //touch sensors2
pinMode(29, INPUT); // battery
digitalWrite(28, LOW);
digitalWrite(27, HIGH);
digitalWrite(26, HIGH);
digitalWrite(25, HIGH);
digitalWrite(6, HIGH);
digitalWrite(7, HIGH);
digitalWrite(8, HIGH);
}
void before()
{
NRF_POWER->DCDCEN = 1;
analogReadResolution(12);
disableNfc();
turnOffAdc();
digitalWrite(25, LOW);
digitalWrite(6, LOW);
wait(200);
digitalWrite(25, HIGH);
digitalWrite(6, HIGH);
wait(100);
playSound0();
wait(100);
digitalWrite(25, LOW);
digitalWrite(6, LOW);
wait(200);
digitalWrite(25, HIGH);
digitalWrite(6, HIGH);
wait(3000);
digitalWrite(27, LOW);
digitalWrite(8, LOW);
wait(200);
digitalWrite(27, HIGH);
digitalWrite(8, HIGH);
wait(400);
digitalWrite(6, LOW);
digitalWrite(25, LOW);
wait(200);
digitalWrite(6, HIGH);
digitalWrite(25, HIGH);
wait(400);
digitalWrite(26, LOW);
digitalWrite(7, LOW);
wait(200);
digitalWrite(26, HIGH);
digitalWrite(7, HIGH);
wait(1000);
digitalWrite(26, LOW);
digitalWrite(7, LOW);
}
void setup()
{
digitalWrite(26, HIGH);
digitalWrite(7, HIGH);
wait(50);
playSound();
wait(2000);
readBatLev();
wait(200);
SLEEP_TIME_W = SLEEP_TIME;
}
void presentation()
{
sendSketchInfo("EFEKTA ON|OFF NODE 2CH", "1.0");
wait(100);
present(POWER_CHILD_ID, S_CUSTOM, "BATTERY DATA");
wait(100);
present(UP_POWER_SWITCH_ID, S_BINARY, "UP SWITCH");
wait(100);
present(DOWN_POWER_SWITCH_ID, S_BINARY, "DOWN SWITCH");
}
void loop()
{
if (sens_flag1 == 0 && sens_flag2 == 0) {
if (switch_a == 0 && switch_b == 0) {
timer_status = sleep(digitalPinToInterrupt(2), RISING, digitalPinToInterrupt(3), RISING, 3600000, false);
wait_off = 1;
} else {
//oldmillis = millis();
timer_status = sleep(digitalPinToInterrupt(2), RISING, digitalPinToInterrupt(3), RISING, SLEEP_TIME_W, false);
wait_off = 0;
}
}
if (timer_status == 3) {
wait(100);
digitalWrite(27, LOW);
digitalWrite(8, LOW);
wait(2000);
digitalWrite(27, HIGH);
digitalWrite(8, HIGH);
wait(100);
digitalWrite(31, LOW);
}
if (timer_status == 2) {
if (digitalRead(9) == HIGH && sens_flag1 == 0 && switch_b == 0) {
sens_flag1 = 1;
if (switch_a == 0) {
oldmillis = millis();
SLEEP_TIME_W = SLEEP_TIME;
switch_a = 1;
digitalWrite(6, LOW);
wait(10);
playSound1();
wait(20);
playSound2();
wait(50);
send(upMsg.set(switch_a));
wait(200);
} else {
switch_a = 0;
digitalWrite(6, HIGH);
wait(10);
playSound2();
wait(20);
playSound1();
wait(50);
send(upMsg.set(switch_a));
wait(200);
}
}
if (digitalRead(10) == HIGH && sens_flag2 == 0 && switch_a == 0) {
sens_flag2 = 1;
if (switch_b == 0) {
oldmillis = millis();
SLEEP_TIME_W = SLEEP_TIME;
switch_b = 1;
digitalWrite(25, LOW);
wait(10);
playSound1();
wait(20);
playSound2();
wait(50);
send(downMsg.set(switch_b));
wait(200);
} else {
switch_b = 0;
digitalWrite(25, HIGH);
wait(10);
playSound2();
wait(20);
playSound1();
wait(50);
send(downMsg.set(switch_b));
wait(200);
}
}
if (digitalRead(9) == LOW && sens_flag1 == 1) {
sens_flag1 = 0;
}
if (digitalRead(10) == LOW && sens_flag2 == 1) {
sens_flag2 = 0;
}
if (switch_a == 1 || switch_b == 1) {
if (wait_off == 0) {
newmillis = millis();
wait(10);
SLEEP_TIME_W2 = SLEEP_TIME_W;
wait(10);
interrupt_time = newmillis - oldmillis;
wait(10);
SLEEP_TIME_W = SLEEP_TIME_W2 - interrupt_time;
wait(10);
Serial.print("WAS IN A SLEEP: ");
Serial.print(newmillis - oldmillis);
Serial.println(" MILLISECONDS");
if (SLEEP_TIME_W < 1000) {
if (switch_a == 1) {
switch_a = 0;
digitalWrite(6, HIGH);
wait(10);
playSound2();
wait(20);
playSound1();
wait(50);
send(upMsg.set(switch_a));
wait(200);
}
if (switch_b == 1) {
switch_b = 0;
digitalWrite(25, HIGH);
wait(10);
playSound2();
wait(20);
playSound1();
wait(50);
send(downMsg.set(switch_b));
wait(200);
}
SLEEP_TIME_W = SLEEP_TIME;
wait(50);
}
Serial.println(SLEEP_TIME);
Serial.println(SLEEP_TIME_W);
Serial.println(SLEEP_TIME_W2);
Serial.print("GO TO SLEEP FOR: ");
Serial.print(SLEEP_TIME_W);
Serial.println(" MILLISECONDS");
}
oldmillis = millis();
}
}
if (timer_status == -1) {
if (switch_a == 1 || switch_b == 1) {
if (switch_a == 1) {
switch_a = 0;
digitalWrite(6, HIGH);
wait(10);
playSound2();
wait(20);
playSound1();
wait(50);
send(upMsg.set(switch_a));
wait(200);
}
if (switch_b == 1) {
switch_b = 0;
digitalWrite(25, HIGH);
wait(10);
playSound2();
wait(20);
playSound1();
wait(50);
send(downMsg.set(switch_b));
wait(200);
}
} else {
readBatLev();
}
}
}
void disableNfc() {
NRF_NFCT->TASKS_DISABLE = 1;
NRF_NVMC->CONFIG = 1;
NRF_UICR->NFCPINS = 0;
NRF_NVMC->CONFIG = 0;
}
void turnOffAdc() {
if (NRF_SAADC->ENABLE) {
NRF_SAADC->TASKS_STOP = 1;
while (NRF_SAADC->EVENTS_STOPPED) {}
NRF_SAADC->ENABLE = 0;
while (NRF_SAADC->ENABLE) {}
}
}
void myTone(uint32_t j, uint32_t k) {
j = 500000 / j;
k += millis();
while (k > millis()) {
digitalWrite(28, HIGH); delayMicroseconds(j);
digitalWrite(28, LOW ); delayMicroseconds(j);
}
}
void playSound0() {
myTone(1300, 50);
wait(20);
myTone(1300, 50);
wait(50);
}
void playSound() {
myTone(700, 30); 
wait(10);
myTone(700, 30);
wait(10);
myTone(700, 30);
wait(50);
}
void playSound1() {
myTone(200, 10);
wait(10);
myTone(400, 5);
wait(30);
}
void playSound2() {
myTone(400, 10);
wait(10);
myTone(200, 5);
wait(30);
}
void readBatLev() {
temp = analogRead(29);
vcc = temp * 0.0033 * 100;
battery = map((int)vcc, BAT_MIN, BAT_MAX, 0, 100);
if (battery < 0) {
battery = 0;
}
if (battery > 100) {
battery = 100;
}
sendBatteryLevel(battery, 1);
wait(2000, C_INTERNAL, I_BATTERY_LEVEL);
send(powerMsg.set(temp));
wait(200);
NrfRSSI = transportGetReceivingRSSI();
NrfRSSI2 = map(NrfRSSI, -85, -40, 0, 100);
if (NrfRSSI2 < 0) {
NrfRSSI2 = 0;
}
if (NrfRSSI2 > 100) {
NrfRSSI2 = 100;
}
send(msgRF52RssiReceiv.set(NrfRSSI2));
wait(200);
}

stl 中的案例文件 - 谷歌驅動器

Gerber PCB 文件 - 谷歌驅動器

如果您對本次開發有任何疑問,或者您在 Arduino 和 Mysensors 上的開發遇到困難,我們的電報聊天室將始終為您提供幫助 - https://t.me/mysensors_rus.

來源: www.habr.com

添加評論