Интеграция Aviasales API с Amazon Kinesis и простота serverless

Привет, Хабр!

А вы любите летать на самолетах? Я обожаю, но на самоизоляции полюбил еще и анализировать данные об авиабилетах одного известного ресурса — Aviasales.

Сегодня мы разберем работу Amazon Kinesis, построим стримминговую систему с реал-тайм аналитикой, поставим NoSQL базу данных Amazon DynamoDB в качестве основного хранилища данных и настроим оповещение через SMS по интересным билетам.

Все подробности под катом! Поехали!

Интеграция Aviasales API с Amazon Kinesis и простота serverless

Введение

Для примера нам потребуется доступ к API Aviasales. Доступ к нему предоставляется бесплатно и без ограничений, необходимо лишь зарегистрироваться в разделе «Разработчикам», чтобы получить свой API токен для доступа к данным.

Основная цель данной статьи — дать общее понимание использования потоковой передачи информации в AWS, мы выносим за скобки, что данные, возвращаемые используемым API не являются строго актуальными и передаются из кэша, который формируется на основании поисков пользователей сайтов Aviasales.ru и Jetradar.com за последние 48 часов.

Полученные через API данные об авиабилетах Kinesis-agent, установленный на машине-продюсере, будет автоматом парсить и передавать в нужный поток через Kinesis Data Analytics. Необработанная версия этого потока будет писаться напрямую в хранилище. Развернутое в DynamoDB хранилище «сырых» данных позволит проводить более глубокий анализ билетов через BI инструменты, например, AWS Quick Sight.

Мы рассмотрим два варианта деплоя всей инфраструктуры:

  • Ручной — через AWS Management Console;
  • Инфраструктура из кода Terraform — для ленивых автоматизаторов;

Архитектура разрабатываемой системы

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Используемые компоненты:

  • Aviasales API — данные, возвращаемые этим API, будут использоваться для всей последующей работы;
  • EC2 Producer Instance — обычная виртуальная машина в облаке, на которой будет генериться входной поток данных:
    • Kinesis Agent — это Java-приложение, устанавливаемое локально на машину, которое предоставляет простой способ сбора и отправки данных в Kinesis (Kinesis Data Streams или Kinesis Firehose). Агент постоянно отслеживает набор файлов в указанных директориях и отправляет новые данные в Kinesis;
    • Скрипт API Caller — Python-скрипт, делающий запросы к API и складывающий ответ в папку, которую мониторит Kinesis Agent;
  • Kinesis Data Streams — сервис потоковой передачи данных в режиме реального времени с широкими возможностями масштабирования;
  • Kinesis Analytics — бессерверный сервис, упрощающий анализ потоковых данных в режиме реального времени. Amazon Kinesis Data Analytics настраивает ресурсы для работы приложений и автоматически масштабируется для обработки любых объемов входящих данных;
  • AWS Lambda — сервис, позволяющий запускать код без резервирования и настройки серверов. Все вычислительные мощности автоматически масштабируются под каждый вызов;
  • Amazon DynamoDB — база данных пар «ключ‑значение» и документов, которая обеспечивает задержку менее 10 миллисекунд при работе в любом масштабе. При использовании DynamoDB не требуется распределять какие-либо серверы, устанавливать на них исправления или управлять ими. DynamoDB автоматически масштабирует таблицы, корректируя объем доступных ресурсов и сохраняя высокую производительность. Никакие действия по администрированию системы не требуются;
  • Amazon SNS — полностью управляемый сервис отправки сообщений по модели «издатель — подписчик» (Pub/Sub), с помощью которого можно изолировать микросервисы, распределенные системы и бессерверные приложения. SNS можно использовать для рассылки информации конечным пользователям с помощью мобильных push-уведомлений, SMS-сообщений и электронных писем.

Начальная подготовка

Для эмуляции потока данных я решил использовать информацию об авиабилетах, возвращаемую API Aviasales. В документации довольно обширный список разных методов, возьмем один из них — «Календарь цен на месяц», который возвращает цены за каждый день месяца, сгруппированные по количеству пересадок. Если не передавать в запросе месяц поиска, то будет возвращена информация за месяц, следующий за текущим.

Итак, регистрируемся, получаем свой токен.

Пример запроса ниже:

http://api.travelpayouts.com/v2/prices/month-matrix?currency=rub&origin=LED&destination=HKT&show_to_affiliates=true&token=TOKEN_API

Вышеописанный способ получения данных от API с указанием токена в запросе будет работать, но мне больше нравится передавать токен доступа через заголовок, поэтому в скрипте api_caller.py будем пользоваться именно этим способом.

Пример ответа:

{{
   "success":true,
   "data":[{
      "show_to_affiliates":true,
      "trip_class":0,
      "origin":"LED",
      "destination":"HKT",
      "depart_date":"2015-10-01",
      "return_date":"",
      "number_of_changes":1,
      "value":29127,
      "found_at":"2015-09-24T00:06:12+04:00",
      "distance":8015,
      "actual":true
   }]
}

В примере ответа API выше показан билет из Санкт-Петербурга в Пхук… Эх, да что мечтать…
Так как я из Казани, а Пхукет сейчас «нам только снится», поищем билеты из Санкт-Петербурга в Казань.

Предполагается, что у вас уже есть аккаунт в AWS. Сразу хочу обратить особое внимание, что Kinesis и отправка уведомлений через SMS не входят в годовой Free Tier (бесплатное использование). Но даже несмотря на это, заложив в уме пару долларов, вполне можно построить предложенную систему и поиграть с ней. И, конечно же, не стоит забывать удалять все ресурсы после того, как они стали не нужны.

К счастью, DynamoDb и лямбда-функции будут для нас условно бесплатными, если уложиться в месячные бесплатные лимиты. Например, для DynamoDB: 25 Гб хранилища, 25 WCU/RCU и 100 млн. запросов. И миллион вызовов лямбда функций в месяц.

Ручной деплой системы

Настройка Kinesis Data Streams

Перейдем в сервис Kinesis Data Streams и создаем два новых потока по одному шарду на каждый.

Что такое шард?
Шард — это основная единица передачи данных потока Amazon Kinesis. Один сегмент обеспечивает передачу входных данных со скоростью 1 МБ/с и передачу выходных данных со скоростью 2 МБ/с. Один сегмент поддерживает до 1000 записей PUT в секунду. При создании потока данных требуется указать нужное количество сегментов. Например, можно создать поток данных с двумя сегментами. Этот поток данных обеспечит передачу входных данных со скоростью 2 МБ/с и передачу выходных данных со скоростью 4 МБ/с с поддержкой до 2000 записей PUT в секунду.

Чем больше шардов в вашем потоке — тем больше его пропускная способность. В принципе, так и масштабируются потоки — путем добавления шардов. Но чем больше у вас шардов, тем выше и цена. Каждый шард стоит 1,5 цента в час и дополнительно 1.4 цента за каждые миллион операций добавления в поток (PUT payload units).

Создадим новый поток с именем airline_tickets, ему вполне достаточно будет 1 шарда:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Теперь создадим еще один поток с именем special_stream:

Интеграция Aviasales API с Amazon Kinesis и простота serverless

Настройка продюсера

В качестве продюсера данных для разбора задачи достаточно использовать обычный EC2 инстанс. Это не должна быть мощная дорогая виртуальная машина, вполне подойдет спотовый t2.micro.

Важное замечание: для примера следует использовать image — Amazon Linux AMI 2018.03.0, с ним меньше настроек для быстрого запуска Kinesis Agent.

Переходим в сервис EC2, создаем новую виртуальную машину, выбираем нужный AMI с типом t2.micro, который входит во Free Tier:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Для того, чтобы вновь созданная виртуальная машина смогла взаимодействовать с сервисом Kinesis, необходимо дать ей на это права. Лучший способ это сделать – назначить IAM Role. Поэтому, на экране Step 3: Configure Instance Details следует выбрать Create new IAM Role:

Создание IAM роли для EC2
Интеграция Aviasales API с Amazon Kinesis и простота serverless
В открывшемся окне, выбираем, что новую роль создаем для EC2 и переходим в раздел Permissions:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
На учебном примере можно не вдаваться во все тонкости гранулярной настройки прав на ресурсы, поэтому выберем преднастроенные Амазоном полиси: AmazonKinesisFullAccess и CloudWatchFullAccess.

Дадим какое-нибудь осмысленное имя для этой роли, например: EC2-KinesisStreams-FullAccess. В результате, должно получиться то же самое, что указано на картинке ниже:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
После создания этой новой роли, не забываем прицепить ее к создаваемому инстансу виртуальной машины:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Больше на этом экране ничего не меняем и переходим к следующим окнам.

Параметры жесткого диска можно оставить по умолчанию, тэги тоже (хотя, хорошей практикой является теги использовать, хотя бы давать имя инстансу и указывать энвайронмент).

Теперь мы на закладке Step 6: Configure Security Group, где необходимо создать новый или указать имеющийся у вас Sеcurity group, позволяющий делать коннект через ssh (порт 22) на инстанс. Выберите там Source —> My IP и можете запускать инстанс.

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Как только он перейдет в статус running, можно пробовать законнектиться на него через ssh.

Чтобы получить возможность работы с Kinesis Agent, после успешного коннекта к машине, необходимо ввести следующие команды в терминале:

sudo yum -y update
sudo yum install -y python36 python36-pip
sudo /usr/bin/pip-3.6 install --upgrade pip
sudo yum install -y aws-kinesis-agent

Создадим папку для сохранения ответов API:

sudo mkdir /var/log/airline_tickets

Перед запуском агента, необходимо настроить его конфиг:

sudo vim /etc/aws-kinesis/agent.json

Содержание файла agent.json должно иметь следующий вид:

{
  "cloudwatch.emitMetrics": true,
  "kinesis.endpoint": "",
  "firehose.endpoint": "",

  "flows": [
    {
      "filePattern": "/var/log/airline_tickets/*log",
      "kinesisStream": "airline_tickets",
      "partitionKeyOption": "RANDOM",
      "dataProcessingOptions": [
         {
            "optionName": "CSVTOJSON",
            "customFieldNames": ["cost","trip_class","show_to_affiliates",
                "return_date","origin","number_of_changes","gate","found_at",
                "duration","distance","destination","depart_date","actual","record_id"]
         }
      ]
    }
  ]
}

Как видно из файла конфигурации, агент будет мониторить в директории /var/log/airline_tickets/ файлы с расширением .log, парсить их и передавать в поток airline_tickets.

Перезапускаем сервис и убеждаемся, что он запустился и работает:

sudo service aws-kinesis-agent restart

Теперь скачаем Python-скрипт, который будет запрашивать данные у API:

REPO_PATH=https://raw.githubusercontent.com/igorgorbenko/aviasales_kinesis/master/producer

wget $REPO_PATH/api_caller.py -P /home/ec2-user/
wget $REPO_PATH/requirements.txt -P /home/ec2-user/
sudo chmod a+x /home/ec2-user/api_caller.py
sudo /usr/local/bin/pip3 install -r /home/ec2-user/requirements.txt

Скрипт api_caller.py запрашивает данные у Aviasales и сохраняет полученный ответ в директории, которую сканирует Kinesis agent. Реализация этого скрипта достаточно стандартна, есть класс TicketsApi, он позволяет асинхронно дергать API. В этот класс передаем заголовок с токеном и параметры запроса:

class TicketsApi:
    """Api caller class."""

    def __init__(self, headers):
        """Init method."""
        self.base_url = BASE_URL
        self.headers = headers

    async def get_data(self, data):
        """Get the data from API query."""
        response_json = {}
        async with ClientSession(headers=self.headers) as session:
            try:
                response = await session.get(self.base_url, data=data)
                response.raise_for_status()
                LOGGER.info('Response status %s: %s',
                            self.base_url, response.status)
                response_json = await response.json()
            except HTTPError as http_err:
                LOGGER.error('Oops! HTTP error occurred: %s', str(http_err))
            except Exception as err:
                LOGGER.error('Oops! An error ocurred: %s', str(err))
            return response_json


def prepare_request(api_token):
    """Return the headers and query fot the API request."""
    headers = {'X-Access-Token': api_token,
               'Accept-Encoding': 'gzip'}

    data = FormData()
    data.add_field('currency', CURRENCY)
    data.add_field('origin', ORIGIN)
    data.add_field('destination', DESTINATION)
    data.add_field('show_to_affiliates', SHOW_TO_AFFILIATES)
    data.add_field('trip_duration', TRIP_DURATION)
    return headers, data


async def main():
    """Get run the code."""
    if len(sys.argv) != 2:
        print('Usage: api_caller.py <your_api_token>')
        sys.exit(1)
        return
    api_token = sys.argv[1]
    headers, data = prepare_request(api_token)

    api = TicketsApi(headers)
    response = await api.get_data(data)
    if response.get('success', None):
        LOGGER.info('API has returned %s items', len(response['data']))
        try:
            count_rows = log_maker(response)
            LOGGER.info('%s rows have been saved into %s',
                        count_rows,
                        TARGET_FILE)
        except Exception as e:
            LOGGER.error('Oops! Request result was not saved to file. %s',
                         str(e))
    else:
        LOGGER.error('Oops! API request was unsuccessful %s!', response)

Для тестирования правильности настроек и работоспособности агента сделаем тестовый запуск скрипта api_caller.py:

sudo ./api_caller.py TOKEN

Интеграция Aviasales API с Amazon Kinesis и простота serverless
И смотрим результат работы в логах Агента и на закладке Monitoring в потоке данных airline_tickets:

tail -f /var/log/aws-kinesis-agent/aws-kinesis-agent.log

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Интеграция Aviasales API с Amazon Kinesis и простота serverless
Как видно, все работает и Kinesis Agent успешно отправляет данные в поток. Теперь настроим consumer.

Настройка Kinesis Data Analytics

Перейдем к центральному компоненту всей системы — создадим новое приложение в Kinesis Data Analytics с именем kinesis_analytics_airlines_app:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Kinesis Data Analytics позволяет выполнять аналитику данных в реальном времени из Kinesis Streams с помощью языка SQL. Это полностью автомасштабируемый сервис (в отличие от Kinesis Streams), который:

  1. позволяет создавать новые потоки (Output Stream) на основе запросов к исходным данным;
  2. предоставляет поток с ошибками, которые возникли во время работы приложений (Error Stream);
  3. умеет автоматически определять схему входных данных (ее можно вручную переопределить при необходимости).

Это недешевый сервис — 0.11 USD за час работы, поэтому пользоваться им следует аккуратно и удалять при завершении работы.

Подключим приложение к источнику данных:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Выбираем поток, к которому собираемcя подключиться (airline_tickets):

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Далее, необходимо приаттачить новую IAM Роль для того, чтобы приложение могло читать из потока и писать в поток. Для этого достаточно ничего не менять в блоке Access permissions:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Теперь запросим обнаружение схемы данных в потоке, для этого нажимаем на кнопку «Discover schema». В результате обновится (создастся новая) роль IAM и будет запущено обнаружение схемы из данных, которые уже прилетели в поток:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Теперь необходимо перейти в редактор SQL. При нажатии на эту кнопку, выйдет окно с вопросом о запуске приложения — выбираем что хотим запустить:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
В окно редактора SQL вставим такой простой запрос и нажимаем Save and Run SQL:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" ("cost" DOUBLE, "gate" VARCHAR(16));

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM "cost", "gate"
FROM "SOURCE_SQL_STREAM_001"
WHERE "cost" < 5000
    and "gate" = 'Aeroflot';

В реляционных базах данных вы работаете с таблицами, используя операторы INSERT для добавления записей и оператор SELECT для запроса данных. В Amazon Kinesis Data Analytics вы работаете с потоками (STREAM) и «насосами» (PUMP) — непрерывными запросами вставки, которые вставляют данные из одного потока в приложении в другой поток.

В представленном выше SQL запросе происходит поиск билетов Аэрофлота по стоимости ниже пяти тысяч рублей. Все записи, попадающие под эти условия, будут помещены в поток DESTINATION_SQL_STREAM.

Интеграция Aviasales API с Amazon Kinesis и простота serverless
В блоке Destination выбираем поток special_stream, а в раскрывающемся списке In-application stream name DESTINATION_SQL_STREAM:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
В результате всех манипуляций должно получиться нечто похожее на картинку ниже:

Интеграция Aviasales API с Amazon Kinesis и простота serverless

Создание и подписка на топик SNS

Переходим в сервис Simple Notification Service и создаем там новый топик c именем Airlines:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Оформляем подписку на этот топик, в ней указываем номер мобильного телефона, на который будут приходить СМС-уведомления:

Интеграция Aviasales API с Amazon Kinesis и простота serverless

Создание таблицы в DynamoDB

Для хранения необработанных данных их потока airline_tickets, создадим таблицу в DynamoDB с таким же именем. В качестве первичного ключа будем использовать record_id:

Интеграция Aviasales API с Amazon Kinesis и простота serverless

Создание лямбда-функции collector

Создадим лямбда-функцию под названием Collector, задачей которой будет опрос потока airline_tickets и, в случае нахождения там новых записей, вставка этих записей в таблицу DynamoDB. Очевидно, что помимо прав по умолчанию, эта лямбда должна иметь доступ к чтению потока данных Kinesis и записи в DynamoDB.

Создание IAM роли для лямбда-функции collector
Для начала создадим новую IAM роль для лямбды с именем Lambda-TicketsProcessingRole:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Для тестового примера вполне подойдут преднастроенные полиси AmazonKinesisReadOnlyAccess и AmazonDynamoDBFullAccess, как показано на картинке ниже:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Интеграция Aviasales API с Amazon Kinesis и простота serverless

Данная лямбда должна запускаться по триггеру от Kinesis при попадании новых записей в поток airline_stream, поэтому надо добавить новый триггер:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Интеграция Aviasales API с Amazon Kinesis и простота serverless
Осталось вставить код и сохранить лямбду.

"""Parsing the stream and inserting into the DynamoDB table."""
import base64
import json
import boto3
from decimal import Decimal

DYNAMO_DB = boto3.resource('dynamodb')
TABLE_NAME = 'airline_tickets'

class TicketsParser:
    """Parsing info from the Stream."""

    def __init__(self, table_name, records):
        """Init method."""
        self.table = DYNAMO_DB.Table(table_name)
        self.json_data = TicketsParser.get_json_data(records)

    @staticmethod
    def get_json_data(records):
        """Return deserialized data from the stream."""
        decoded_record_data = ([base64.b64decode(record['kinesis']['data'])
                                for record in records])
        json_data = ([json.loads(decoded_record)
                      for decoded_record in decoded_record_data])
        return json_data

    @staticmethod
    def get_item_from_json(json_item):
        """Pre-process the json data."""
        new_item = {
            'record_id': json_item.get('record_id'),
            'cost': Decimal(json_item.get('cost')),
            'trip_class': json_item.get('trip_class'),
            'show_to_affiliates': json_item.get('show_to_affiliates'),
            'origin': json_item.get('origin'),
            'number_of_changes': int(json_item.get('number_of_changes')),
            'gate': json_item.get('gate'),
            'found_at': json_item.get('found_at'),
            'duration': int(json_item.get('duration')),
            'distance': int(json_item.get('distance')),
            'destination': json_item.get('destination'),
            'depart_date': json_item.get('depart_date'),
            'actual': json_item.get('actual')
        }
        return new_item

    def run(self):
        """Batch insert into the table."""
        with self.table.batch_writer() as batch_writer:
            for item in self.json_data:
                dynamodb_item = TicketsParser.get_item_from_json(item)
                batch_writer.put_item(dynamodb_item)

        print('Has been added ', len(self.json_data), 'items')

def lambda_handler(event, context):
    """Parse the stream and insert into the DynamoDB table."""
    print('Got event:', event)
    parser = TicketsParser(TABLE_NAME, event['Records'])
    parser.run()

Создание лямбда-функции notifier

Вторая лямбда-функция, которая будет мониторить второй поток (special_stream) и отправлять уведомление в SNS, создается аналогично. Следовательно, эта лямбда должна иметь доступ на чтение из Kinesis и отправку сообщений в заданный SNS-топик, который далее сервисом SNS будет отправлен всем подписчикам этого топика (email, SMS и т.д).

Создание IAM роли
Сначала создаем IAM роль Lambda-KinesisAlarm для этой лямбды, а потом назначаем эту роль для создаваемой лямбды alarm_notifier:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Интеграция Aviasales API с Amazon Kinesis и простота serverless

Эта лямбда должна работать по триггеру на попадание новых записей в поток special_stream, поэтому необходимо настроить триггер аналогично тому, как мы это делали для лямбды Collector.

Для удобства настройки этой лямбды, введем новую переменную окружения — TOPIC_ARN, куда помещаем ANR (Amazon Recourse Names) топика Airlines:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
И вставляем код лямбды, он совсем несложный:

import boto3
import base64
import os

SNS_CLIENT = boto3.client('sns')
TOPIC_ARN = os.environ['TOPIC_ARN']


def lambda_handler(event, context):
    try:
        SNS_CLIENT.publish(TopicArn=TOPIC_ARN,
                           Message='Hi! I have found an interesting stuff!',
                           Subject='Airline tickets alarm')
        print('Alarm message has been successfully delivered')
    except Exception as err:
        print('Delivery failure', str(err))

Кажется, на этом ручная настройка системы завершена. Остается только протестировать и убедиться в том, что мы настроили все правильно.

Деплой из кода Terraform

Необходимая подготовка

Terraform — очень удобный open-source инструмент для развертывания инфраструктуры из кода. У него свой синтаксис, который легко освоить и множество примеров, как и что развернуть. В редакторе Atom или Visual Studio Code много удобных плагинов, позволяющих облегчить работу с Terraform.

Дистрибутив скачать можно отсюда. Подробный разбор всех возможностей Terraform выходит за рамки данной статьи, поэтому ограничимся основными моментами.

Как запустить

Полный код проекта лежит в моем репозитории. Клонируем к себе репозиторий. Перед запуском необходимо убедиться, что у вас установлен и настроен AWS CLI, т.к. Terraform будет искать учетные данные в файле ~/.aws/credentials.

Хорошей практикой является перед деплоем всей инфраструктуры, запускать команду plan, чтобы посмотреть, что Terraform нам сейчас насоздает в облаке:

terraform.exe plan

Будет предложено ввести номер телефона для отправки на него уведомлений. На этом этапе его вводить необязательно.

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Проанализировав план работы программы, можем запускать создание ресурсов:

terraform.exe apply

После отправки этой команды опять появится запрос на введение номера телефона, набираем «yes», когда будет показан вопрос о реальном выполнении действий. Это позволит поднять всю инфраструктуру, провести всю необходимую настройку EC2, развернуть лямбда-функции и т.д.

После того, как все ресурсы будут успешно созданы через код Terraform, необходимо зайти в детали приложения Kinesis Analytics (к сожалению, я не нашел как это сделать сразу из кода).

Запускаем приложение:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
После этого необходимо явно задать in-application stream name, выбрав из раскрывающегося списка:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Интеграция Aviasales API с Amazon Kinesis и простота serverless
Теперь все готово к работе.

Тестирование работы приложения

Вне зависимости, как вы деплоили систему, вручную или через код Terraform, работать она будет одинаково.

Заходим по SSH на виртуальную машину EC2, где установлен Kinesis Agent и запускаем скрипт api_caller.py

sudo ./api_caller.py TOKEN

Осталось дождаться SMS на ваш номер:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
SMS — сообщение приходит на телефон практически через 1 минуту:

Интеграция Aviasales API с Amazon Kinesis и простота serverless
Осталось посмотреть, сохранились ли записи в базе данных DynamoDB для последующего, более детального анализа. Таблица airline_tickets содержит примерно такие данные:

Интеграция Aviasales API с Amazon Kinesis и простота serverless

Заключение

В ходе проделанной работы была построена система онлайн-обработки данных на базе Amazon Kinesis. Были рассмотрены варианты использования Kinesis Agent в связке с Kinesis Data Streams и реал-тайм аналитикой Kinesis Analytics при помощи SQL команд, а также взаимодействие Amazon Kinesis с другими сервисами AWS.

Вышеописанную систему мы развернули двумя способами: достаточно долгим ручным и быстрым из кода Terraform.

Весь исходный код проекта доступен в моем репозитории на GitHub, предлагаю с ним ознакомиться.

С удовольствием готов обсудить статью, жду Ваших комментариев. Надеюсь на конструктивную критику.

Желаю успехов!

Источник: habr.com