И снова здравствуйте! Заголовок статьи говорит сам о себе. В преддверии старта курса «Data Engineer» предлагаем разобраться в том, кто же такие дата-инженеры. В статье очень много полезных ссылок. Приятного прочтения.
Простое руководство о том, как поймать волну Data Engineering и не дать ей затянуть вас в пучину.
Складывается впечатление, что в наши дни каждый хочет стать дата-саентистом (Data Scientist). Но как насчет Data Engineering (инжиниринга данных)? По сути, это своего рода гибрид дата-аналитика и дата-саентиста; дата-инженер обычно отвечает за управление рабочими процессами, конвейерами обработки и ETL-процессами. Ввиду важности этих функций, в настоящее время это очередной популярный профессиональный жаргонизм, который активно набирает обороты.
Высокая зарплата и огромный спрос — это лишь малая часть того, что делает эту работу чрезвычайно привлекательной! Если вы хотите пополнить ряды героев, никогда не поздно начать учиться. В этом посте я собрал всю необходимую информацию, чтобы помочь вам сделать первые шаги.
Итак, начнем!
Что такое Data Engineering?
Честно говоря, нет лучшего объяснения, чем это:
«Ученый может открыть новую звезду, но не может ее создать. Ему придется просить инженера сделать это за него.»
–Гордон Линдсей Глегг
Таким образом, роль дата-инженера достаточно весома.
Из названия следует, что инженерия данных связана с данными, а именно с их доставкой, хранением и обработкой. Соответственно, основная задача инженеров — обеспечить надежную инфраструктуру для данных. Если мы посмотрим на ИИ-иерархию потребностей, инженерия данных занимает первые 2–3 этапа: сбор, перемещение и хранение, подготовка данных.
Чем занимается инженер данных?
С появлением больших данных сфера ответственности резко изменилась. Если раньше эти эксперты писали большие SQL-запросы и перегоняли данные с помощью таких инструментов, как Informatica ETL, Pentaho ETL, Talend, то теперь требования к дата-инженерам повысились.
Большинство компаний с открытыми вакансиями на должность дата-инженера предъявляют следующие требования:
Отличное знание SQL и Python.
Опыт работы с облачными платформами, в частности Amazon Web Services.
Предпочтительно знание Java/Scala.
Хорошее понимание баз данных SQL и NoSQL (моделирование данных, хранение данных).
Имейте в виду, это только самое необходимое. Из этого списка можно предположить, что дата-инженеры являются специалистами в области разработки программного обеспечения и бекенда.
Например, если компания начинает генерировать большой объем данных из разных источников, ваша задача как дата-инженера состоит в том, чтобы организовать сбор информации, ее обработку и хранение.
Список используемых в этом случае инструментов может отличаться, все зависит от объема этих данных, скорости их поступления и неоднородности. Большинство компаний вообще не сталкиваются с большими данными, поэтому в качестве централизованного хранилища, так называемого хранилища данных, можно использовать базу данных SQL (PostgreSQL, MySQL и т. д.) с небольшим набором скриптов, которые направляют данные в хранилище.
IT-гиганты, такие как Google, Amazon, Facebook или Dropbox, предъявляют более высокие требования: знание Python, Java или Scala.
Опыт работы с большими данными: Hadoop, Spark, Kafka.
Знание алгоритмов и структур данных.
Понимание основ распределенных систем.
Опыт работы с инструментами визуализации данных, такими как Tableau или ElasticSearch, будет большим плюсом.
То есть наблюдается явное смещение в сторону больших данных, а именно в их обработке при высоких нагрузках. У этих компаний повышенные требования к отказоустойчивости системы.
Дата-инженеры Vs. дата-саентисты
Ладно, это было простое и забавное сравнение (ничего личного), но на самом деле все намного сложнее.
Во-первых, вы должны знать, что существует достаточно много неясности в разграничении ролей и навыков дата-саентиста и дата-инженера. То есть, вы легко можете быть озадачены тем, какие все-таки навыки необходимы для успешного дата-инженера. Конечно, есть определенные навыки, которые накладываются на обе роли. Но также есть целый ряд диаметрально противоположных навыков.
Наука о данных — это серьезное дело, но мы движется к миру с функциональной дата саенс, где практикующие способны делать свою собственную аналитику. Чтобы задействовать конвейеры данных и интегрированные структуры данных, вам нужны инженеры данных, а не ученые.
Является ли дата-инженер более востребованным, чем дата-саентист?
— Да, потому что прежде чем вы сможете приготовить морковный пирог, вам нужно сначала собрать, очистить и запастись морковью!
Дата-инженер разбирается в программировании лучше, чем любой дата-саентист, но когда дело доходит до статистики, все с точностью до наоборот.
Но вот преимущество дата-инженера:
без него/нее ценность модели-прототипа, чаще всего состоящей из фрагмента кода ужасного качества в файле Python, полученной от дата-саентиста и каким-то образом дающей результат, стремится к нулю.
Без дата-инженера этот код никогда не станет проектом, и никакая бизнес-проблема не будет эффективно решена. Инженер данных пытается превратить это все в продукт.
Основные сведения, которые должен знать дата-инженер
Итак, если эта работа пробуждает в вас свет и вы полны энтузиазма — вы способны научиться этому, вы можете овладеть всеми необходимыми навыками и стать настоящей рок-звездой в области разработки данных. И, да, вы можете осуществить это даже без навыков программирования или других технических знаний. Это сложно, но возможно!
Каковы первые шаги?
Вы должны иметь общее представление о том, что есть что.
Прежде всего, Data Engineering относится к информатике. Конкретне — вы должны понимать эффективные алгоритмы и структуры данных. Во-вторых, поскольку дата-инженеры работают с данными, необходимо понимание принципов работы баз данных и структур, лежащих в их основе.
Например, обычные B-tree SQL базы данных основаны на структуре данных B-Tree, а также, в современных распределенных репозиториях, LSM-Tree и других модификациях хеш-таблиц.
* Эти шаги основаны на замечательной статье Адиля Хаштамова. Итак, если вы знаете русский язык, поддержите этого автора и прочитайте его пост.
1. Алгоритмы и структуры данных
Использование правильной структуры данных может значительно улучшить производительность алгоритма. В идеале, мы все должны изучать структуры данных и алгоритмы в наших школах, но это редко когда-либо освещается. Во всяком случае, ознакомится никогда не поздно.
Итак, вот мои любимые бесплатные курсы для изучения структур данных и алгоритмов:
Плюс не забывайте о классической работе над алгоритмами Томаса Кормена — Введение в алгоритмы. Это идеальный справочник, когда вам нужно освежить свою память.
Вся наша жизнь — это данные. И для того, чтобы извлечь эти данные из базы данных, вам нужно «говорить» с ними на одном языке.
SQL (Structured Query Language — язык структурированных запросов) является языком общения в области данных. Независимо от того, что кто-то говорит, SQL жил, жив и будет жить еще очень долго.
Если вы долгое время находились в разработке, вы, вероятно, заметили, что слухи о скорой смерти SQL появляются периодически. Язык был разработан в начале 70-х годов и до сих пор пользуется огромной популярностью среди аналитиков, разработчиков и просто энтузиастов.
Без знания SQL в инженерии данных делать нечего, так как вам неизбежно придется создавать запросы для извлечения данных. Все современные хранилища больших данных поддерживают SQL:
Amazon Redshift
HP Vertica
Oracle
SQL Server
… и множество других.
Для анализа большого слоя данных, хранящихся в распределенных системах, таких как HDFS, были изобретены механизмы SQL: Apache Hive, Impala и т. д. Видите, он не собирается никуда уходить.
Как выучить SQL? Просто делай это на практике.
Для этого я бы порекомендовал ознакомиться с отличным учебником, который, кстати, бесплатный, от Mode Analytics.
Отличительной особенностью этих курсов является наличие интерактивной среды, в которой вы можете писать и выполнять SQL-запросы прямо в браузере. Ресурс Modern SQL не будет лишним. И вы можете применить эти знания в задачах Leetcode в разделе Базы данных.
3. Программирование на Python и Java/Scala
Почему стоит изучать язык программирования Python, я уже писал в статье Python vs R. Выбор лучшего инструмента для AI, ML и Data Science. Что касается Java и Scala, большинство инструментов для хранения и обработки огромных объемов данных написаны на этих языках. Например:
Apache Kafka (Scala)
Hadoop, HDFS (Java)
Apache Spark (Scala)
Apache Cassandra (Java)
HBase (Java)
Apache Hive (Java)
Чтобы понять, как работают эти инструменты, вам нужно знать языки, на которых они написаны. Функциональный подход Scala позволяет эффективно решать задачи параллельной обработки данных. Python, к сожалению, не может похвастаться скоростью и параллельной обработкой. В целом, знание нескольких языков и парадигм программирования хорошо влияет на широту подходов к решению проблем.
Чтобы погрузиться в язык Scala, вы можете прочитать Программирование в Scala от автора языка. Также компания Twitter опубликовала хорошее вводное руководство — Scala School.
Что касается Python, я считаю Fluent Python лучшей книгой среднего уровня.
4. Инструменты для работы с большими данными
Вот список самых популярных инструментов в мире больших данных:
Знание хотя бы одной облачной платформы находится в списке базовых требований, предъявляемым к соискателям на должность дата-инженера. Работодатели отдают предпочтение Amazon Web Services, на втором месте — облачная платформа Google, и замыкает тройку лидеров Microsoft Azure.
Вы должны хорошо ориентироваться в Amazon EC2, AWS Lambda, Amazon S3, DynamoDB.
6. Распределенные системы
Работа с большими данными подразумевает наличие кластеров независимо работающих компьютеров, связь между которыми осуществляется по сети. Чем больше кластер, тем больше вероятность отказа его узлов-членов. Чтобы стать крутым экспертом в области данных, вам необходимо вникнуть в проблемы и существующие решения для распределенных систем. Эта область старая и сложная.
Эндрю Таненбаум считается пионером в этой области. Для тех, кто не боится теории, я рекомендую его книгу «Распределенные системы», для начинающих она может показаться сложной, но это действительно поможет вам отточить свои навыки.
Конвейеры данных — это то, без чего вы не можете жить в качестве дата-инженера.
Большую часть времени дата-инженер строит так называемую пайплайн дату, то есть создает процесс доставки данных из одного места в другое. Это могут быть пользовательские сценарии, которые идут к API внешнего сервиса или делают SQL-запрос, дополняют данные и помещают их в централизованное хранилище (хранилище данных) или хранилище неструктурированных данных (озера данных).
Подводя итог: основной чеклист дата-инженера
Подытожим — необходимо хорошее понимание следующего:
Информационные системы;
Разработка программного обеспечения (Agile, DevOps, Design Techniques, SOA);
Распределенные системы и параллельное программирование;
Основы баз данных — планирование, проектирование, эксплуатация и устранение неисправностей;
Проектирование экспериментов — A/B-тесты для доказательства концепций, определения надежности, производительности систем, а также для разработки надежных путей для оперативного предоставления хороших решений.
Это лишь несколько требований для того, чтобы стать инженером данных, поэтому изучите и разберитесь с системами данных, информационными системами, непрерывной доставкой/ развертыванием/интеграцией, языками программирования и другими темами по информатике (не во всех предметных областях).
И, наконец, последнее, но очень важное, что я хочу сказать.
Путь становления Data Engineering не так прост, как может показаться. Он не прощает, фрустрирует, и вы должны быть готовы к этому. Некоторые моменты в этом путешествии могут подтолкнуть вас все бросить. Но это настоящий труд и учебный процесс.
Просто не приукрашивайте его с самого начала. Весь смысл путешествия в том, чтобы узнать как можно больше и быть готовым к новым вызовам.
Вот отличная картинка, с которой я столкнулся, которая хорошо иллюстрирует этот момент:
И да, не забудьте избегать выгорания и отдыхать. Это тоже очень важно. Удачи!
Как вам статья, друзья? Приглашаем на бесплатный вебинар, который состоится уже сегодня в 20.00. В рамках вебинара обсудим, как построить эффективную и масштабируемую систему обработки данных для небольшой компании или стартапа с минимальными затратами. В качестве практики познакомимся с инструментами обработки данных Google Cloud. До встречи!