ProHoster > Блог > Администрирование > Разворачиваем вложенные столбцы — списки с помощью языка R (пакет tidyr и функции семейства unnest)
Разворачиваем вложенные столбцы — списки с помощью языка R (пакет tidyr и функции семейства unnest)
В большинстве случаев при работе с ответом полученным от API, или с любыми другими данными которые имеют сложную древовидную структуру, вы сталкиваетесь с форматами JSON и XML.
Эти форматы имеют множество преимуществ: они достаточно компактно хранят данные и позволяют избежать излишнего дублирования информации.
Минусом данных форматов является сложность их обработки и анализа. Неструктурированные данные невозможно использовать в вычислениях и нельзя строить на их основе визуализацию.
Данная статья является логическим продолжением публикации "R пакет tidyr и его новые функции pivot_longer и pivot_wider". Она поможет вам привести неструктурированные конструкции данных к привычному, и пригодному для анализа табличному виду с помощью пакета tidyr, входящего в ядро библиотеки tidyverse, и его функций семейства unnest_*().
Содержание
Если вы интересуетесь анализом данных возможно вам будут интересны мои telegram и youtube каналы. Большая часть контента которых посвящены языку R.
Rectangling(прим. переводчика, не нашел адекватных вариантов перевода этого термина, поэтому оставим его как есть.) — это процесс приведения не структурированных данных с вложенными массивами к двухмерной таблице, состоящей из привычных нам строк и столбцов. В tidyr есть несколько функций, которые помогут вам развернуть вложенные столбцы-списки и привести данные к прямоугольной, табличной форме:
unnest_longer() берет каждый элемент списка-столбца и создает новую строку.
unnest_wider() берет каждый элемент списка-столбца и создает новый столбец.
unnest_auto() автоматически определяет какую из функций лучше использовать unnest_longer() или unnest_wider().
hoist() похожа на unnest_wider() но отбирает только указанные компоненты и позволяет работать с несколькими уровнями вложенности.
Большинство проблем связанных с приведением не структурированных данных с несколькими уровнями вложенности к двухмерной таблице можно решить, комбинируя перечисленные функции с dplyr.
Для демонстрации этих приемов, мы будем использовать пакет repurrrsive, который предоставляет несколько сложных, многоуровневых списков, полученных из веб-API.
Начнем с gh_users, списка, который содержит информацию о шести пользователях GitHub. Для начала преобразуем список gh_users в tibble фрейм.:
users <- tibble( user = gh_users )
Это кажется немного нелогичным: зачем приводить список gh_users, к более сложной структуре данных? Но у дата фрейма есть большое преимущество: он объединяет несколько векторов, так что все отслеживается в одном объекте.
Каждый элемент объекта users представляет собой именованный список, в котором каждый элемент представляет столбец.
В этом случае мы получили таблицу состоящую из 30 столбцов, и большинство из них нам не понадобятся, поэтому мы можем вместо unnest_wider() использовать hoist(). hoist() позволяет нам извлекать выбранные компоненты, используя тот же синтаксис, что и purrr::pluck():
users %>% hoist(user,
followers = "followers",
login = "login",
url = "html_url"
)
#> # A tibble: 6 x 4
#> followers login url user
#> <int> <chr> <chr> <list>
#> 1 303 gaborcsardi https://github.com/gaborcsardi <named list [27]>
#> 2 780 jennybc https://github.com/jennybc <named list [27]>
#> 3 3958 jtleek https://github.com/jtleek <named list [27]>
#> 4 115 juliasilge https://github.com/juliasilge <named list [27]>
#> 5 213 leeper https://github.com/leeper <named list [27]>
#> 6 34 masalmon https://github.com/masalmon <named list [27]>
hoist() удаляет указанные именованные компоненты из списка-столбца user, поэтому вы можете рассматривать hoist() как перемещение компонентов из внутреннего списка дата фрейма к его верхнему уровню.
Репозитории Github
Выравнивание списка gh_repos мы начинаем аналогично, преобразуя его в tibble:
На этот раз элементы user представляют собой список репозиториев, принадлежащих этому пользователю. Каждый репозиторий является отдельным наблюдением, поэтому согласно концепции аккуратных данных (прим. tidy data) они должны стать новыми строками, в связи с чем мы используем unnest_longer() а не unnest_wider():
repos <- repos %>% unnest_longer(repo)
repos
#> # A tibble: 176 x 1
#> repo
#> <list>
#> 1 <named list [68]>
#> 2 <named list [68]>
#> 3 <named list [68]>
#> 4 <named list [68]>
#> 5 <named list [68]>
#> 6 <named list [68]>
#> 7 <named list [68]>
#> 8 <named list [68]>
#> 9 <named list [68]>
#> 10 <named list [68]>
#> # … with 166 more rows
Теперь мы можем использовать unnest_wider() или hoist() :
repos %>% hoist(repo,
login = c("owner", "login"),
name = "name",
homepage = "homepage",
watchers = "watchers_count"
)
#> # A tibble: 176 x 5
#> login name homepage watchers repo
#> <chr> <chr> <chr> <int> <list>
#> 1 gaborcsardi after <NA> 5 <named list [65]>
#> 2 gaborcsardi argufy <NA> 19 <named list [65]>
#> 3 gaborcsardi ask <NA> 5 <named list [65]>
#> 4 gaborcsardi baseimports <NA> 0 <named list [65]>
#> 5 gaborcsardi citest <NA> 0 <named list [65]>
#> 6 gaborcsardi clisymbols "" 18 <named list [65]>
#> 7 gaborcsardi cmaker <NA> 0 <named list [65]>
#> 8 gaborcsardi cmark <NA> 0 <named list [65]>
#> 9 gaborcsardi conditions <NA> 0 <named list [65]>
#> 10 gaborcsardi crayon <NA> 52 <named list [65]>
#> # … with 166 more rows
Обратите внимание на использование c("owner", "login"): это позволяет нам получить значение второго уровня из вложенного списка owner. Альтернативный подход состоит в том, чтобы получить весь список owner и затем с помощью функции unnest_wider() поместить каждый его элемент в столбец:
Вместо того, что бы размышлять над выбором нужной функции unnest_longer() или unnest_wider() вы можете использовать unnest_auto(). Эта функция использует несколько эвристических методов для подбора наиболее подходящей функции для трансформации данных, и выводит сообщение о выбранном способе.
got_chars имеет идентичную структуру с gh_users: это набор именованных списков, где каждый элемент внутреннего списка описывает некоторый атрибут персонажа Игры Престолов. Приведение got_chars к табличному виду мы начинаем с создания дата фрейма, так же как и в приведённых ранее примерах, а затем переведём каждый элемент в отдельный столбец:
chars <- tibble(char = got_chars)
chars
#> # A tibble: 30 x 1
#> char
#> <list>
#> 1 <named list [18]>
#> 2 <named list [18]>
#> 3 <named list [18]>
#> 4 <named list [18]>
#> 5 <named list [18]>
#> 6 <named list [18]>
#> 7 <named list [18]>
#> 8 <named list [18]>
#> 9 <named list [18]>
#> 10 <named list [18]>
#> # … with 20 more rows
chars2 <- chars %>% unnest_wider(char)
chars2
#> # A tibble: 30 x 18
#> url id name gender culture born died alive titles aliases father
#> <chr> <int> <chr> <chr> <chr> <chr> <chr> <lgl> <list> <list> <chr>
#> 1 http… 1022 Theo… Male Ironbo… In 2… "" TRUE <chr … <chr [… ""
#> 2 http… 1052 Tyri… Male "" In 2… "" TRUE <chr … <chr [… ""
#> 3 http… 1074 Vict… Male Ironbo… In 2… "" TRUE <chr … <chr [… ""
#> 4 http… 1109 Will Male "" "" In 2… FALSE <chr … <chr [… ""
#> 5 http… 1166 Areo… Male Norvos… In 2… "" TRUE <chr … <chr [… ""
#> 6 http… 1267 Chett Male "" At H… In 2… FALSE <chr … <chr [… ""
#> 7 http… 1295 Cres… Male "" In 2… In 2… FALSE <chr … <chr [… ""
#> 8 http… 130 Aria… Female Dornish In 2… "" TRUE <chr … <chr [… ""
#> 9 http… 1303 Daen… Female Valyri… In 2… "" TRUE <chr … <chr [… ""
#> 10 http… 1319 Davo… Male Wester… In 2… "" TRUE <chr … <chr [… ""
#> # … with 20 more rows, and 7 more variables: mother <chr>, spouse <chr>,
#> # allegiances <list>, books <list>, povBooks <list>, tvSeries <list>,
#> # playedBy <list>
Структура got_chars несколько сложнее, чем gh_users, т.к. некоторые компоненты списка char сами по себе являются списком, в результате мы получаем столбы — списки:
Ваши дальнейшие действия зависят от целей анализа. Возможно, вам необходимо поместить в строки информацию по каждой книге и сериале, в котором появляется персонаж:
chars2 %>%
select(name, books, tvSeries) %>%
pivot_longer(c(books, tvSeries), names_to = "media", values_to = "value") %>%
unnest_longer(value)
#> # A tibble: 180 x 3
#> name media value
#> <chr> <chr> <chr>
#> 1 Theon Greyjoy books A Game of Thrones
#> 2 Theon Greyjoy books A Storm of Swords
#> 3 Theon Greyjoy books A Feast for Crows
#> 4 Theon Greyjoy tvSeries Season 1
#> 5 Theon Greyjoy tvSeries Season 2
#> 6 Theon Greyjoy tvSeries Season 3
#> 7 Theon Greyjoy tvSeries Season 4
#> 8 Theon Greyjoy tvSeries Season 5
#> 9 Theon Greyjoy tvSeries Season 6
#> 10 Tyrion Lannister books A Feast for Crows
#> # … with 170 more rows
Или, может быть, вы хотите создать таблицу, которая позволит вам сопоставить персонажа и произведение:
chars2 %>%
select(name, title = titles) %>%
unnest_longer(title)
#> # A tibble: 60 x 2
#> name title
#> <chr> <chr>
#> 1 Theon Greyjoy Prince of Winterfell
#> 2 Theon Greyjoy Captain of Sea Bitch
#> 3 Theon Greyjoy Lord of the Iron Islands (by law of the green lands)
#> 4 Tyrion Lannister Acting Hand of the King (former)
#> 5 Tyrion Lannister Master of Coin (former)
#> 6 Victarion Greyjoy Lord Captain of the Iron Fleet
#> 7 Victarion Greyjoy Master of the Iron Victory
#> 8 Will ""
#> 9 Areo Hotah Captain of the Guard at Sunspear
#> 10 Chett ""
#> # … with 50 more rows
(Обратите внимание, на пустые значения "" в поле title, это связано с ошибками допущенными при вводе данных в got_chars: на самом деле персонажи для которых нет соответствующих заголовков книг и сериалов в поле title должны иметь вектор длины 0, а не вектор длины 1, содержащий пустую строку.)
Мы можем переписать приведённый выше пример используя функцию unnest_auto(). Этот подход удобен для разового анализа, но не стоит полагаться на unnest_auto() для использования на регулярной основе. Дело в том, что если ваша структура данных изменится unnest_auto() может поменять выбранный механизм преобразования данных, если изначально он разворачивал столбцы-списки в строки используя unnest_longer(), то при изменении структуры входящих данных логика может быть изменена в пользу unnest_wider(), и использование такого подхода на постоянной основе может привести к непредвиденным ошибкам.
tibble(char = got_chars) %>%
unnest_auto(char) %>%
select(name, title = titles) %>%
unnest_auto(title)
#> Using `unnest_wider(char)`; elements have 18 names in common
#> Using `unnest_longer(title)`; no element has names
#> # A tibble: 60 x 2
#> name title
#> <chr> <chr>
#> 1 Theon Greyjoy Prince of Winterfell
#> 2 Theon Greyjoy Captain of Sea Bitch
#> 3 Theon Greyjoy Lord of the Iron Islands (by law of the green lands)
#> 4 Tyrion Lannister Acting Hand of the King (former)
#> 5 Tyrion Lannister Master of Coin (former)
#> 6 Victarion Greyjoy Lord Captain of the Iron Fleet
#> 7 Victarion Greyjoy Master of the Iron Victory
#> 8 Will ""
#> 9 Areo Hotah Captain of the Guard at Sunspear
#> 10 Chett ""
#> # … with 50 more rows
Геокодирование с помощью Google
Далее мы рассмотрим более сложную структуру данных, получаемых от службы геокодирования Google. Кэширование учётных данных противоречит условиям работы с API Google maps, поэтому я сначала напишу простую оболочку к API. Которая основана на хранении ключа API Google карт в переменной среды; если в переменных среды у вас не сохранён ключ для работы с API Google Maps, фрагменты кода представленные в этом разделе выполняться не будут.
has_key <- !identical(Sys.getenv("GOOGLE_MAPS_API_KEY"), "")
if (!has_key) {
message("No Google Maps API key found; code chunks will not be run")
}
# https://developers.google.com/maps/documentation/geocoding
geocode <- function(address, api_key = Sys.getenv("GOOGLE_MAPS_API_KEY")) {
url <- "https://maps.googleapis.com/maps/api/geocode/json"
url <- paste0(url, "?address=", URLencode(address), "&key=", api_key)
jsonlite::read_json(url)
}
Список, который возвращает эта функция, довольно сложен:
К счастью, мы можем пошагово решить проблему преобразования этих данных в табличный вид с помощью функций tidyr. Чтобы сделать задачу немного сложнее и реалистичнее, я начну с геокодирования нескольких городов:
city <- c ( "Houston" , "LA" , "New York" , "Chicago" , "Springfield" ) city_geo <- purrr::map (city, geocode)
Полученный результат я преобразую в tibble, для удобства добавлю столбец с соответствующим названием города.
loc <- tibble(city = city, json = city_geo)
loc
#> # A tibble: 5 x 2
#> city json
#> <chr> <list>
#> 1 Houston <named list [2]>
#> 2 LA <named list [2]>
#> 3 New York <named list [2]>
#> 4 Chicago <named list [2]>
#> 5 Springfield <named list [2]>
Первый уровень содержит компоненты status и result, который мы можем развернуть с помощью unnest_wider() :
loc %>%
unnest_wider(json)
#> # A tibble: 5 x 3
#> city results status
#> <chr> <list> <chr>
#> 1 Houston <list [1]> OK
#> 2 LA <list [1]> OK
#> 3 New York <list [1]> OK
#> 4 Chicago <list [1]> OK
#> 5 Springfield <list [1]> OK
Обратите внимание, что results является многоуровневым списком. У большинства городов есть 1 элемент (представляющий уникальное значение, соответствующее API геокодирования), но у Спрингфилда их два. Мы можем вытащить их в отдельные строки с помощью unnest_longer() :
loc %>%
unnest_wider(json) %>%
unnest_longer(results)
#> # A tibble: 5 x 3
#> city results status
#> <chr> <list> <chr>
#> 1 Houston <named list [5]> OK
#> 2 LA <named list [5]> OK
#> 3 New York <named list [5]> OK
#> 4 Chicago <named list [5]> OK
#> 5 Springfield <named list [5]> OK
Теперь все они имеют одинаковые компоненты, в чём можно убедиться с помощью unnest_wider():
loc %>%
unnest_wider(json) %>%
unnest_longer(results) %>%
unnest_wider(results)
#> # A tibble: 5 x 7
#> city address_componen… formatted_addre… geometry place_id types status
#> <chr> <list> <chr> <list> <chr> <lis> <chr>
#> 1 Houst… <list [4]> Houston, TX, USA <named … ChIJAYWN… <lis… OK
#> 2 LA <list [4]> Los Angeles, CA… <named … ChIJE9on… <lis… OK
#> 3 New Y… <list [3]> New York, NY, U… <named … ChIJOwg_… <lis… OK
#> 4 Chica… <list [4]> Chicago, IL, USA <named … ChIJ7cv0… <lis… OK
#> 5 Sprin… <list [5]> Springfield, MO… <named … ChIJP5jI… <lis… OK
Мы можем найти координаты широты и долготы каждого города развернув список geometry:
loc %>%
unnest_wider(json) %>%
unnest_longer(results) %>%
unnest_wider(results) %>%
unnest_wider(geometry)
#> # A tibble: 5 x 10
#> city address_compone… formatted_addre… bounds location location_type
#> <chr> <list> <chr> <list> <list> <chr>
#> 1 Hous… <list [4]> Houston, TX, USA <name… <named … APPROXIMATE
#> 2 LA <list [4]> Los Angeles, CA… <name… <named … APPROXIMATE
#> 3 New … <list [3]> New York, NY, U… <name… <named … APPROXIMATE
#> 4 Chic… <list [4]> Chicago, IL, USA <name… <named … APPROXIMATE
#> 5 Spri… <list [5]> Springfield, MO… <name… <named … APPROXIMATE
#> # … with 4 more variables: viewport <list>, place_id <chr>, types <list>,
#> # status <chr>
А затем местоположение, для чего требуется развернуть location:
loc %>%
unnest_wider(json) %>%
unnest_longer(results) %>%
unnest_wider(results) %>%
unnest_wider(geometry) %>%
unnest_wider(location)
#> # A tibble: 5 x 11
#> city address_compone… formatted_addre… bounds lat lng location_type
#> <chr> <list> <chr> <list> <dbl> <dbl> <chr>
#> 1 Hous… <list [4]> Houston, TX, USA <name… 29.8 -95.4 APPROXIMATE
#> 2 LA <list [4]> Los Angeles, CA… <name… 34.1 -118. APPROXIMATE
#> 3 New … <list [3]> New York, NY, U… <name… 40.7 -74.0 APPROXIMATE
#> 4 Chic… <list [4]> Chicago, IL, USA <name… 41.9 -87.6 APPROXIMATE
#> 5 Spri… <list [5]> Springfield, MO… <name… 37.2 -93.3 APPROXIMATE
#> # … with 4 more variables: viewport <list>, place_id <chr>, types <list>,
#> # status <chr>
Опять же, unnest_auto() упрощает описанную операцию с некоторыми рисками, которые могут быть вызваны изменением структуры входящих данных:
loc %>%
unnest_auto(json) %>%
unnest_auto(results) %>%
unnest_auto(results) %>%
unnest_auto(geometry) %>%
unnest_auto(location)
#> Using `unnest_wider(json)`; elements have 2 names in common
#> Using `unnest_longer(results)`; no element has names
#> Using `unnest_wider(results)`; elements have 5 names in common
#> Using `unnest_wider(geometry)`; elements have 4 names in common
#> Using `unnest_wider(location)`; elements have 2 names in common
#> # A tibble: 5 x 11
#> city address_compone… formatted_addre… bounds lat lng location_type
#> <chr> <list> <chr> <list> <dbl> <dbl> <chr>
#> 1 Hous… <list [4]> Houston, TX, USA <name… 29.8 -95.4 APPROXIMATE
#> 2 LA <list [4]> Los Angeles, CA… <name… 34.1 -118. APPROXIMATE
#> 3 New … <list [3]> New York, NY, U… <name… 40.7 -74.0 APPROXIMATE
#> 4 Chic… <list [4]> Chicago, IL, USA <name… 41.9 -87.6 APPROXIMATE
#> 5 Spri… <list [5]> Springfield, MO… <name… 37.2 -93.3 APPROXIMATE
#> # … with 4 more variables: viewport <list>, place_id <chr>, types <list>,
#> # status <chr>
Мы также можем просто посмотреть на первый адрес для каждого города:
loc %>%
unnest_wider(json) %>%
hoist(results, first_result = 1) %>%
unnest_wider(first_result) %>%
unnest_wider(geometry) %>%
unnest_wider(location)
#> # A tibble: 5 x 11
#> city address_compone… formatted_addre… bounds lat lng location_type
#> <chr> <list> <chr> <list> <dbl> <dbl> <chr>
#> 1 Hous… <list [4]> Houston, TX, USA <name… 29.8 -95.4 APPROXIMATE
#> 2 LA <list [4]> Los Angeles, CA… <name… 34.1 -118. APPROXIMATE
#> 3 New … <list [3]> New York, NY, U… <name… 40.7 -74.0 APPROXIMATE
#> 4 Chic… <list [4]> Chicago, IL, USA <name… 41.9 -87.6 APPROXIMATE
#> 5 Spri… <list [5]> Springfield, MO… <name… 37.2 -93.3 APPROXIMATE
#> # … with 4 more variables: viewport <list>, place_id <chr>, types <list>,
#> # status <chr>
Или использовать hoist() для многоуровневого погружения, чтобы перейти непосредственно к lat и lng.
loc %>%
hoist(json,
lat = list("results", 1, "geometry", "location", "lat"),
lng = list("results", 1, "geometry", "location", "lng")
)
#> # A tibble: 5 x 4
#> city lat lng json
#> <chr> <dbl> <dbl> <list>
#> 1 Houston 29.8 -95.4 <named list [2]>
#> 2 LA 34.1 -118. <named list [2]>
#> 3 New York 40.7 -74.0 <named list [2]>
#> 4 Chicago 41.9 -87.6 <named list [2]>
#> 5 Springfield 37.2 -93.3 <named list [2]>
Дискография Шарлы Гельфанд
В завершении мы рассмотрим самую сложную конструкцию — дискографию Шарлы Гельфанд. Как и в приведённых выше примерах, мы начинаем с конвертации списка в дата фрейм с одним столбцом, а затем расширим его, чтобы каждый компонент был отдельным столбцом. Также я преобразую столбец date_added в соответствующий формат даты и времени в R.
discs <- tibble(disc = discog) %>%
unnest_wider(disc) %>%
mutate(date_added = as.POSIXct(strptime(date_added, "%Y-%m-%dT%H:%M:%S")))
discs
#> # A tibble: 155 x 5
#> instance_id date_added basic_information id rating
#> <int> <dttm> <list> <int> <int>
#> 1 354823933 2019-02-16 17:48:59 <named list [11]> 7496378 0
#> 2 354092601 2019-02-13 14:13:11 <named list [11]> 4490852 0
#> 3 354091476 2019-02-13 14:07:23 <named list [11]> 9827276 0
#> 4 351244906 2019-02-02 11:39:58 <named list [11]> 9769203 0
#> 5 351244801 2019-02-02 11:39:37 <named list [11]> 7237138 0
#> 6 351052065 2019-02-01 20:40:53 <named list [11]> 13117042 0
#> 7 350315345 2019-01-29 15:48:37 <named list [11]> 7113575 0
#> 8 350315103 2019-01-29 15:47:22 <named list [11]> 10540713 0
#> 9 350314507 2019-01-29 15:44:08 <named list [11]> 11260950 0
#> 10 350314047 2019-01-29 15:41:35 <named list [11]> 11726853 0
#> # … with 145 more rows
На этом уровне мы получили информацию о том, когда каждый диск был добавлен в дискографию Шарлы, но при этом не видим никаких данных об этих дисках. Для этого нам нужно расширить столбец basic_information:
discs %>% unnest_wider(basic_information)
#> Column name `id` must not be duplicated.
#> Use .name_repair to specify repair.
К сожалению мы получим ошибку, т.к. внутри списка basic_information есть одноимённый столбец basic_information. При возникновении подобной ошибки, для того, что бы быстро определить её причину можно использовать names_repair = "unique":
Затем вы можете присоединить их обратно к исходному набору данных по мере необходимости.
Заключение
В ядро библиотеки tidyverse входят множество полезных пакетов объединённые общей философией обработки данных.
В этой статье мы разобрали семейство функций unnest_*(), которые направлены на работу с извлечением элементов из вложенных списков. Данный пакет содержит множество других полезных функций, которые упрощают преобразование данных согласно концепции Tidy Data.