За июнь-июль к нам обратилось почти два десятка компаний, интересовавшихся возможностями виртуальных GPU. «Графикой» от Cloud4Y уже пользуется одна из крупных «дочек» Сбербанка, но в целом услуга не слишком популярная. Так что подобная активность нас весьма порадовала. Видя рост интереса к технологии, мы решили чуть подробнее рассказать про vGPU.
«Озёра данных», полученные в результате научных экспериментов и исследований, Deep Learning и другие направления работы с ИИ, моделирование крупных и сложных объектов — всё это требует высокопроизводительного «железа». Хорошо, если оно есть и позволяет быстро решать текущие задачи. Вот только из-за возрастающей вычислительной сложности задач (в первую очередь касается для бизнес-аналитики, рендеринга, DL-алгоритмов и фреймворков) аппаратные мощности настольных и даже серверных CPU всё чаще становятся бесполезны.
Выход был найден в использовании вычислений на GPU. Эта технология ускорения графики обеспечивает разделение ресурсов одного графического процессора между несколькими виртуальными компьютерами. GPU изначально проектировался для работы с графикой, потому состоит из тысячи мелких ядер, используемых для эффективной обработки параллельных задач. При этом на GPU выполняется часть самых ресурсоемких вычислений, остальное берёт на себя CPU.
Вычисления с помощью GPU придумала компания
Проблему призвана решить технология виртуальных графических процессоров: vGPU. С её помощью пользователи могут удалённо запускать тяжёлые приложения вроде AutoCAD, 3DS Max, Maya, Sony Vegas Pro. Виртуализация быстро отвоевала свою долю рынка. Ведь какой русский data-scientist не любит быстрых вычислений на видеокартах NVidia Tesla?
Здесь стоит отметить, что до появления vGPU использовались другие методы ускорения обработки графики: Virtual Shared Graphics Acceleration (vSGA и Virtual Dedicated Graphics Acceleration (vDGA). Решение vGPU объединило лучшее из обеих технологий. Как и в случае vSGA, в среде vGPU предполагается совместное использование GPU и RAM несколькими виртуальными рабочими столами, но при этом каждая ВМ передаёт команды напрямую к GPU, как в случае с vDGA.
Зачем вообще нужны vGPU
Облачные вычисления с использованием vGPU позволяют компаниям справляться с задачами, которые раньше невозможно было решить. Или возможно, но для этого требовалось нереально много ресурсов. 1 современный GPU-сервер способен заменить до 100 обычных CPU. Есть и другие,
Многие специалисты нуждаются в мощных устройствах, способных выполнять параллельные вычисления. Архитекторы и инженеры используют технологию vGPU в системах проектирования (тот же Autodesk, к примеру). Дизайнеры работают с цифровым фото- и видеоконтентом (Photoshop, CorelDraw).
Думаете, всё? Как бы не так. Технологию используют и для автоматической
При всём при этом решения на базе vGPU пока что не получили широкого распространения в мире. Так, в 2018 году NetApp провёл
Решения для vGPU
Разработкой технологий виртуализации графических ускорителей занимается много компаний, но среди них есть безусловные лидеры.
Один из наиболее авторитетных разработчиков решений в сфере облачных решений, компания VMware предлагает компаниям гипервизор
Nvidia тоже старается соответствовать ожиданиям рынка, и для этого выпустила opensource-платформу
Своя технология есть и у AMD. Платформа называется
Intel строит свою технологию базе кросс-платформенного гипервизора
Рыночные перспективы
Независимые аналитики считают, что объём продаж решений для HPC-систем достигнет 45 млрд долларов к 2022 году. Разработчики платформ также ожидают увеличения спроса на высокопроизводительные системы. Это ожидание подкрепляется популярностью Big Data и часто возникающей необходимостью обрабатывать крупные объёмы данных.
Также рост спроса на vGPU может стимулировать развитие гибридных технологий, объединяющих GPU и CPU в одном устройстве. В таких интегрированных решениях два вида ядер используют общий кэш, что ускоряет перенос данных между графическими и традиционными процессорами.
Гибриды в корне изменить подход к виртуализации и распределению виртуальных ресурсов в рамках дата-центров. А решения с открытым исходным кодом наподобие ROCm и Rapids позволяют операторам ЦОД эффективнее использовать вычислительные ресурсы, повышая производительность оборудования.
Есть и другое мнение. Например, что виртуальные GPU будут вытеснены оптическими чипами с фотонным кодированием данных. Такие решения уже существуют и используются для машинного обучения. Более того, они кажутся
Какой можно сделать вывод? Несмотря на возможное появление аналогов, vGPU — вполне перспективное направление, способное решать большое количество задач. Но подходит оно не всем. Так что запятую в заголовке можете поставить сами.
P.S.
Подписывайтесь на наш
Только зарегистрированные пользователи могут участвовать в опросе.
Вы использует vGPU?
-
Да, часто требуются виртуальные мощности
-
Нет и вряд ли планируем
Проголосовали 23 пользователя. Воздержались 11 пользователей.
Источник: habr.com